
Qualcomm Technologies, Inc.

© 2008, 2009, 2011, 2013, 2014, 2016 Qualcomm Technologies, Inc. All rights reserved.

Qualcomm Hexagon is a product of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are products of Qualcomm
Technologies, Inc. or its subsidiaries.

Hexagon TRACE32
User Guide

80-N2040-28 Rev. C

January 13, 2016

Qualcomm and Hexagon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. All Qualcomm
Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their
respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and
international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

Questions or comments: support.cdmatech.com

https://support.cdmatech.com

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 3

Contents

1 Introduction... 6
1.1 Overview .. 6
1.2 Block diagram .. 7
1.3 Reporting problems .. 7

2 Installing TRACE32 Software .. 8
2.1 Overview .. 8
2.2 Install procedure ... 8

3 Starting TRACE32... 9
3.1 Overview .. 9
3.2 TRACE32 command .. 9

4 TRACE32 Pod Configuration... 10
4.1 Overview .. 10
4.2 ARM configuration file .. 11
4.3 Hexagon configuration file... 11

5 Loading Hexagon Images.. 12
5.1 Overview .. 12
5.2 Script files... 12

6 Configuring The Hexagon Processor ... 13
6.1 Overview .. 13
6.2 Basic configuration... 14
6.3 Semihosting configuration.. 15
6.4 RTOS applications.. 15

7 Debugging Multithreaded Applications.. 16
7.1 Overview .. 16
7.2 IDSB debug control registers ... 17

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 4

Hexagon TRACE32 User Guide Contents

8 Debugging Applications on the Software Simulator....................... 18
8.1 Overview .. 18
8.2 MCD... 19
8.3 Installation .. 19
8.4 Quick start guide... 21

8.4.1 Launching TRACE32/MCD with configuration file .. 21
8.4.2 Configuring MCD with SYSTEM.MCDCONFIG... 22

A Using TRACE32.. 25
A.1 Overview ... 25
A.2 Error messages “debug port fail” or “debug port time out” 26
A.3 Debugger window displays flickering data ... 27
A.4 Warning message when stepping into functions.. 27
A.5 Error message “running(off)” .. 27
A.6 Error message “Emulation debug port fail…” .. 28
A.7 Debugging exceptions in the target application .. 28
A.8 TRACE32 fails with message “bus error”... 29
A.9 TRACE32 fails with message “access timeout…”.. 30
A.10 TRACE32 terminates with request for license file.. 30
A.11 Running the debugger without the GUI... 30

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

Hexagon TRACE32 User Guide Tables

Tables
Table 3-1 TRACE32 start command.. 9
Table 7-1 ISDB debug control registers... 17
Table 8-1 MCD support files.. 20
Table 8-2 MCD support variables .. 20
Table A-1 TCB structure... 29

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 6

1 Introduction

1.1 Overview
TRACE32® is an industry-standard in-circuit debugging system developed by Lauterbach
GmbH. It supports many target processors, including ARM® and Hexagon™ processors.

TRACE32 consists of both hardware and software:

■ The hardware links the host computer with the hardware debug platform

■ The software provides a GUI debug interface on the host computer

It can be used to debug and trace on hardware SURF boards, RUMI and ZeBu emulation
platforms, and the Hexagon software simulator. All of these targets require the TRACE32
software; however, only the SURF boards and emulation targets require the TRACE32
hardware (which consists of an attached TRACE32 pod and license dongle).

This document describes only the Hexagon-specific features of TRACE32. For
information on generic TRACE32 features see the Lauterbach documentation (which is
provided with the Hexagon software development tools).

This document covers the following topics:

■ Installing TRACE32 software on the host computer

■ Configuring the TRACE32 hardware pod

■ Creating shortcuts for the software

■ Loading Hexagon binary images from the ARM processor

■ Configuring the Hexagon processor for debugging

■ Using TRACE32 to debug applications

■ Debugging multithreaded applications

■ Debugging applications on the software simulator

NOTE This document does not cover ETM configuration for TRACE32. For more
information see the document Training_Hexagon_ETM.pdf in the
Lauterbach TRACE32 documentation.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

Hexagon TRACE32 User Guide Introduction

1.2 Block diagram
Figure 1-1 shows the block diagram of a TRACE32-based debugging system.

Figure 1-1 TRACE32 debugging system

1.3 Reporting problems
Most problems reported by TRACE32 users are ultimately caused not by the debugger but
by incorrectly-configured hardware and software.

Before reporting any problems or requesting support, be sure that you’re using the most
recent version of TRACE32:

■ Check for the latest patch version in the TRACE32 release directory.

■ Check your current TRACE32 version by typing “VERSION” at the TRACE32 B::
prompt.

■ Include your TRACE32 version with any problem report or support request.

When reporting a problem or requesting support, be sure to do the following:

■ When possible, create a simple test case which demonstrates the problem.

■ Scripting errors are common sources of problems. If using them provide
information on where they can be found, or attach them to the problem report.

■ Debugger screen shots can be invaluable (and less work to create than written
descriptions).

??

Ethernet 5

5

T32 POD
Lauterbach Trace32
GUI

32

Logic
Analyzer

. cmm
practice
scripts

??

Ethernet 5

5

Target board

ETM port

T32 PODLauterbach TRACE32
GUI

PC or Linux platform

32

Logic
analyzer

. cmm
practice
scripts

JTAG ARM, Hexagon

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8

2 Installing TRACE32 Software

2.1 Overview
This chapter describes the procedure for installing the Hexagon TRACE32 software on a
host computer running Windows, Linux (32- or 64-bit), Mac OS X, or Sun.

NOTE The Windows version of TRACE32 supports all Server, Desktop, and
Embedded variations of Windows XP, Windows Vista, Windows 7, and
Windows 8.

2.2 Install procedure
Obtain a copy of the standard Lauterbach install disc (a DVD titled “POWERVIEW Product
Software”).

Verify that the install disc is the most recent version available.

Locate the file installation.pdf that is stored on the install disc.

Perform the installation procedure described in installation.pdf.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 9

3 Starting TRACE32

3.1 Overview
This chapter describes how to start the TRACE32 software.

3.2 TRACE32 command
Before TRACE32 can be started, the current directory must be set to the directory
containing the TRACE32 executable file (c:\t32 for Windows).

Table 3-1 lists the commands for starting TRACE32 on the host computer:

 The command name specifies the target processor (ARM or Hexagon)

 The -c option specifies the target-specific pod configuration file

 The -s option specifies the TRACE32 startup script

Specific file names for the pod configuration and startup script files are not shown in
Table 3-1, because these file names are target-dependent.

NOTE On Windows, TRACE32 can alternatively be started with the command
t32start.exe.

For more information on TRACE32 pod configuration files and startup scripts
see Chapter 4 and Chapter 5.

For more information on starting TRACE32 (including the alternate start
command) see the document training_icd.pdf in the Lauterbach
TRACE32 documentation.

Table 3-1 TRACE32 start command

Host Target Command
Windows ARM t32marm.exe -c arm_config.cfg -s arm_startup.cmm

Hexagon t32mqdsp6.exe -c hexagon_config.cfg -s hexagon_startup.cmm

Linux ARM t32marm -c arm_config.cfg -s arm_startup.cmm

Hexagon t32mqdsp6 -c hexagon_config.cfg -s hexagon_startup.cmm

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 10

4 TRACE32 Pod Configuration

4.1 Overview
The TRACE32 hardware that links the host computer with the hardware debug platform is
referred to as the pod.

The pod requires the following types of information to communicate with the host
computer and hardware debug platform:

 Host software configuration

 Ethernet port assignment (if not using USB pod)

TRACE32 obtains this information from configuration files stored on the host computer.

Separate configuration files are used for the ARM and Hexagon processors.

NOTE Predefined configuration files are provided with each target system – users do
not have to create these files or modify them.

For more information on pod configuration see the document
training_icd.pdf in the Lauterbach TRACE32 documentation.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 11

Hexagon TRACE32 User Guide TRACE32 Pod Configuration

4.2 ARM configuration file
The following code example shows the TRACE32 ARM configuration file
(arm_mconfig.cfg).

PRINTER=WINDOWS

; Environment variables
OS=
ID=unique_ARM_id
TMP=C:\T32\Temp
SYS=C:\T32

; Ethernet on Host information
PBI=
NET
NODE=ip_address_of_T32_probe
CORE=1

; Remote Control Access
RCL=NETASSIST
PORT=20000

4.3 Hexagon configuration file
The following code example shows the TRACE32 Hexagon configuration file
(hexagon_mconfig.cfg).

PRINTER=WINDOWS

; Environment variables
OS=
ID=unique_Hexagon_id
TMP=C:\T32\Temp
SYS=C:\T32

; Ethernet on Host information
PBI=
NET
NODE=ip_address_of_T32_probe
CORE=2

; REMOTE Control Access
RCL=NETASSIST
PORT=20001

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 12

5 Loading Hexagon Images

5.1 Overview
This chapter describes how Hexagon binary images are loaded onto the hardware debug
platform.

NOTE On many target systems, when the target device comes out of reset, its ARM
core is the one that runs. The ARM is used to load code for the device’s other
cores into memory.

5.2 Script files
TRACE32 supports the use of a scripting language (named PRACTICE) to enable the
automated execution of a sequence of commands. A script file is used to load Hexagon
binary images into the hardware debug platform.

The load script files are dependent on the target system.

NOTE Predefined load script files are provided with each target system – users do
not have to create these files or modify them.

For more information on load script files see the document training_
practice.pdf in the Lauterbach TRACE32 documentation.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 13

6 Configuring The Hexagon Processor

6.1 Overview
TRACE32 uses script files to load Hexagon binary images into the hardware debug
platform (Section 5.2). This chapter describes how the script file is used to configure the
Hexagon processor for executing the loaded image. It covers the following topics:

 Basic configuration

 Semihosting configuration

 RTOS application configuration

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 14

Hexagon TRACE32 User Guide Configuring The Hexagon Processor

6.2 Basic configuration
The following TRACE32 properties must be set for all binary images:

 Processor version

 Symbol information

Processor version

The Hexagon processor version must be specified. For more information on processor
versions see the Hexagon Programmer’s Reference Manual.

Here is an example of the relevant code in the load script file:

 System.cpu HexagonV4M

Symbol information

To use TRACE32, application symbol information must be loaded along with the
application image.

Here is an example of the relevant code in the load script file:

 data.load.elf filename

NOTE TRACE32 defines many other commands that can be used in load scripts. For
more information see the following documents in the Lauterbach TRACE32
documentation: general_func.pdf, general_ref_a.pdf through
general_ref_z.pdf, ide_func.pdf, and ide_ref.pdf.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 15

Hexagon TRACE32 User Guide Configuring The Hexagon Processor

6.3 Semihosting configuration
For applications that execute on a hardware target (or on the Hexagon simulator in a
virtual platform), a host runtime environment must be simulated by the debugger using the
ARM ANGEL interface. This process is known as semihosting.

To support the runtime environment the following configuration must be performed:

 The debugger must set a hardware breakpoint at the trap0 handler.

 The debugger must be informed about the trap0 handler symbol. The ANGEL
address defaults to EVB+0x20.

 The debugger must be informed about the (application-specific) heap and stack
locations.

Here is an example of the relevant code in the load script file:

; --- Semi-hosting Setup ---
;
;
break.set event_handle_trap0 /onchip
term.reset
term.heapinfo 0x0 0x10000 0x10000 0x10000

term.method ANGEL event_handle_trap0

term.scroll on
term.mode string
term.gate

6.4 RTOS applications
To support the runtime environment for RTOS application systems, the following
configuration must be performed:

 RTOS awareness module

 Memory management

 Load symbol information

For more information see the appropriate Hexagon RTOS documentation.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 16

7 Debugging Multithreaded
Applications

7.1 Overview
This chapter describes the ISDB registers that are used to debug multithreaded
applications. These registers control the following events:

 Which hardware threads enter into debug mode when a hardware or software
breakpoint occurs

 Which hardware threads resume when an external resume request occurs

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 17

Hexagon TRACE32 User Guide Debugging Multithreaded Applications

7.2 IDSB debug control registers
Table 7-1 lists the ISDB registers used to control multithreaded application debugging.

Each 6-bit register field corresponds to the six hardware threads (which are numbered 0-5,
with 0 corresponding to the LSB in each register field). For each bit in these fields:

 0: Corresponding hardware thread not specified

 1: Corresponding hardware thread specified

The default setting for these register fields is 111111.

NOTE The use of register fields to control the hardware threads enables them to enter
debug mode or resume execution in groups.

Table 7-1 ISDB debug control registers

Register Name Bits Description
ISDBCFG0 21:16 Hardware threads that resume execution when

external resume request is received.

13:8 Hardware threads that enter debug mode when
external breakpoint is requested.

ISDBCFG1 29:24 Hardware threads that enter debug mode when
hardware breakpoint 1 is hit.

21:16 Hardware threads that enter debug mode when
hardware breakpoint 0 is hit.

13:8 Hardware threads that enter debug mode when
software breakpoint is hit.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 18

8 Debugging Applications on the
Software Simulator

8.1 Overview
TRACE32 is normally used to debug programs on a hardware debug platform. However,
when used with the MCD software extension, TRACE32 can be used to debug programs
running on the Hexagon processor instruction set simulator (hexagon-sim).

This chapter describes how to use TRACE32 and MCD to debug programs on the
simulator.

NOTE This chapter is not intended as documentation for either TRACE32 or the
simulator – it assumes users are experienced with both these tools.

For more information see the document Hexagon Simulator User Guide.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 19

Hexagon TRACE32 User Guide Debugging Applications on the Software Simulator

8.2 MCD
The Multi-Core Debug (MCD) extension is a dynamic library which serves as an interface
between TRACE32 and the simulator.

 It supports full multi-core debugging capabilities.

 It is available for both the Windows and Linux versions of TRACE32.

8.3 Installation
TRACE32 must be specifically configured to load the MCD dynamic library file. This is
done using the TRACE32 configuration file, which specifies the filename (and optionally
the pathname) of the MCD dynamic library.

The Hexagon processor software development tools provide the following example files
to support the use of MCD:

 MCD dynamic library file

 TRACE32 configuration file

 TRACE32 startup script file

Table 8-1 lists the file names and their locations in the tools release directory.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 20

Hexagon TRACE32 User Guide Debugging Applications on the Software Simulator

The name of the dynamic library file is specified in the example configuration file with the
following command:

PBI=MCD hexagon-mcd64.so (Linux version)
PBI=MCD hexagon-mcd64.dll (Windows version)

The pathname of the dynamic library file can be specified in two ways:

 A system environment variable (Table 8-2)

 The TRACE32 configuration file

Table 8-2 lists the path variables that are set to include the dynamic library pathname.

Table 8-1 MCD support files

Platform T32 Name Location

MCD Dynamic
Library File

Linux $T32SYS/bin/pc_linux/
t32mqdsp6

$T32SYS/bin/pc_linux/t3
2mqdsp6-qt

hexagon-
mcd32.so (or
T32_MCD.so)

<install_root>\qc\
lib\iss

$T32SYS/bin/pc_linux64/
t32mqdsp6

$T32SYS/bin/pc_linux64/
t32mqdsp6-qt

hexagon-
mcd64.so

Windows %T32SYS%\bin\windows\
t32mqdsp6.exe

hexagon-
mcd32.dll
(or
T32_MCD.dll)

<install_root>\
Tools\bin

%T32SYS%\bin\windows64\
t32mqdsp6.exe

hexagon-
mcd64.dll

TRACE32
Configuration

File

Linux – linux.cfg <install_root>/
Examples/TRACE32/
Linux_Example

Windows – win.cfg <install_root>\
Examples\TRACE32\
Windows_Example

TRACE32
Startup Script

File

Linux – hexagon.cmm <install_root>/
Examples/TRACE32/
Linux_Example

Windows – hexagon.cmm <install_root>\
Examples\TRACE32\
Windows_Example

Table 8-2 MCD support variables

Platform Variable Location
Linux LD_LIBRARY_PATH <install_root>/Tools/lib/iss

Windows PATH <install_root>\Tools\bin

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 21

Hexagon TRACE32 User Guide Debugging Applications on the Software Simulator

Alternatively, the MCD command in the TRACE32 configuration file can be modified to
include the complete path to the dynamic library file. For example:

 PBI=MCD C:\Qualcomm\HEXAGON_Tools\version\Tools\bin\hexagon-mcd64.dll

NOTE The startup script files are specified as command arguments in the command
used to launch TRACE32 (Section 8.4.1).

8.4 Quick start guide
MCD can launch a new instance of the simulator, or connect to an existing simulator
instance.

The MCD extension is configured in TRACE32 with the PRACTICE command
SYSTEM.MCDCONFIG..

NOTE SYSTEM.MCDCONFIG must be performed before attempting the
SYSTEM.MODE.ATTACH command.

8.4.1 Launching TRACE32/MCD with configuration file
The following commands launch TRACE32 and MCD using the example configuration
and script files provided with the Hexagon processor tools release.

Linux:

 t32mqdsp6 -c <install_root>/Examples/TRACE32/Linux_Example/linux.cfg
 -s <install_root>/Examples/TRACE32/Linux_Example/hexagon.cmm

Windows:

 t32mqdsp6.exe -c <install_root>\Examples\TRACE32\Windows_Example\win.cfg
 -s <install_root>\Examples\TRACE32\Windows_Example\hexagon.cmm

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 22

Hexagon TRACE32 User Guide Debugging Applications on the Software Simulator

8.4.2 Configuring MCD with SYSTEM.MCDCONFIG
MCD is configured in TRACE32 with the following command:

SYSTEM.MCDCONFIG [arch=version]
 [hostname=hostname]
 [port=port_number]
 [debug=mask]
 [simargs=valid_sim_arguments]
 [interactive=(yes|no)]

The command arguments are defined as follows:

arch

The optional arch argument specifies the Hexagon processor version to simulate. The
argument value is specified as vX, where X is one of the processor versions specified in the
simulator option -mvX.

For example, specifying v5a_256 as the arch argument causes MCD to launch the
simulator with option -mv5a_256. For more information on the simulator options see the
Hexagon Simulator User Guide.

The arch argument must match the processor architecture of the executable file being
debugged.

NOTE The arch argument is ignored when attaching to an existing simulator.

As an alternative to using arch, the Hexagon processor version can be
specified in the simargs argument using the simulator option -mvX.

hostname

The optional hostname argument specifies the host name of the machine a simulator
instance is already running on. Any valid host name can be specified (including
“localhost”).

hostname is used to connect TRACE32 to an existing (i.e., already running) instance of
the Hexagon processor simulator. The instance may be running on the current machine or
on another machine.

NOTE If hostname is specified, port must also be specified.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 23

Hexagon TRACE32 User Guide Debugging Applications on the Software Simulator

port

The optional port argument specifies the TCP/IP port that will be used to communicate
with a simulator instance. The port number value can be any number that is acceptable to
strtoul() and does not violate the standard rules for TCP/IP port numbers.

port is used to connect TRACE32 to an existing instance of the simulator. It must be
specified if the simulator is launched independently of TRACE32.

port is also used to launch a simulator instance on the same machine TRACE32 is
running on, but using a port number other than the default value (808368). In this case the
port parameter is specified, but hostname is not.

Alternate port numbers are specified in cases where it is necessary to avoid port number
collisions (for example, when running multiple MCD-extended debuggers on the same
host machine, with each communicating through a different port).

NOTE As an alternative to using port, the port number can be specified in the
simargs argument using the simulator option -G.

debug

The optional debug argument selectively controls the printing of diagnostic information
by the MCD extension itself.

debug specifies a mask value which determines the type of information printed. The mask
value bits are defined as follows:

 /* DEBUG control, settable with SYS.MCDCONFIG debug=xx */
 #define REGISTER_OPS 1 // register read/write message
 #define MEMORY_OPS 2 // memory read/write msgs
 #define STATUS_REPLY 4 // status reply msgs from simu
 #define FLOW_MSGS 8 // program flow messages
 #define PACKET_FLOW 0x10 // low-level packet diagnostics
 #define ERROR_MSGS 0x20 // error states
 #define TXLIST_MSGS 0x40 // transmit list diags
 #define TRIGGER_OPS 0x80 // breakpoint diags
 #define ALL_MSGS 0xFF // all of the above

The diagnostic information is written to stderr, which can be captured by redirecting it to
a file when launching TRACE32.

For example (on Windows):

t32mqdsp6.exe -c win.cfg win.cmm 2 > my_debug_output.txt

The resulting file is ASCII text.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 24

Hexagon TRACE32 User Guide Debugging Applications on the Software Simulator

debug is used to debug the MCD extension itself (which can be useful if it is the suspected
source of a system bug). The generated diagnostic file may provide insight into the cause
of a particular problem; however, it is primarily intended for use by the MCD maintainers.

NOTE The generated diagnostic file can grow rapidly and become extremely large.

When using debug consider minimizing the number of open TRACE32
windows, as each open window generates constant traffic to the simulator.

simargs

The optional simargs argument specifies simulator command arguments which will be
passed to the simulator instance launched by MCD.

If used, the simargs argument must appear as the last argument in the
SYSTEM.MCDCONFIG command.

The specified simulator command arguments are not checked by TRACE32 – the user is
responsible for verifying that they are valid.

NOTE The best way to do this is to manually launch the simulator with the specified
command arguments and see if they work as expected.

simargs is enabled only when MCD launches a new simulator instance. If
MCD connects to an existing instance, simargs will collect the specified
simulator command arguments but then do nothing with them.

interactive

The optional interactive argument controls whether popup windows appear when an
error occurs (such as syntax errors or premature simulator exits).

interactive accepts the following values:

 yes – Enable popup windows (default)

 no – Disable popup windows

NOTE Popup windows are supported only in Windows.

Using the MCD arguments

The simplest and least error-prone way to launch a new simulator instance is to use only
the simargs argument.

The simplest way to attach to an existing simulator instance is to specify only the port
argument and optionally the hostname argument (which defaults to “localhost” if not
specified). Then, after MCD attaches to the simulator, it will query the simulator for all the
necessary details.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 25

A Using TRACE32

A.1 Overview
This chapter describes various issues related to using TRACE32. It covers the following
topics:

 Error messages “debug port fail” or “debug port time out”

 Debugger window displays flickering data

 Using wildcards in the symbol browser

 Warning message when stepping into functions

 Error message “running(off)”

 Error message “Emulation debug port fail...”

 Debugging exceptions in the target application

 TRACE32 fails with message “bus error”

 TRACE32 fails with message “access timeout, processor running”

 TRACE32 terminates with request for license file

 Running the debugger without the GUI

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 26

Hexagon TRACE32 User Guide Using TRACE32

A.2 Error messages “debug port fail” or “debug port
time out”
The TRACE32 debugger command system.up is typically the first command executed in
a debug session.

If this command generates the error message “debug port fail” or “debug port time
out”, open the debugger AREA window to view any additional messages that might have
been generated (for example, “target processor in reset” is simply a follow-up
error message).

The “debug port” error messages can be generated for a number of reasons:

 The target system has no power, or the debug cable is not connected to the target.
This results in the additional error message “target power fail”.

 The command system.cpu was specified with an invalid processor type.

 The JTAG interface experienced an electrical problem – check the schematic.

 The debug features need to be enabled (jumpered) on the target. For example, the
debugger will not work if signal nTRST is directly connected to ground on the
target side. (This is a known issue on some SURF boards.)

 The target system is in an unrecoverable state – re-power it and try again.

 The target system cannot communicate with the debugger while in reset. If this
occurs, instead of using the system.up command try using system.mode
attach followed by break, or alternatively “system.option enreset off”.

 The default JTAG clock speed is too fast, especially when the target processor is
emulated or when using an FPGA-based target. In this case try using the
command “system.jtagclock 50kHz”; then after the target is working, try
gradually increasing the specified clock speed.

 The target processor needs adaptive clocking. In this case specify RTCK mode
with the command “system.jtagclock rtck” (which is typical for ARM
cores).

 The debugger multicore settings are missing when the target is a daisy-chained
multi-core system. To check this, enter the command “diag 3400” and then view
the AREA window:

 The value “ir_width > 5” indicates that the multicore settings are
necessary.

 The value “ir_width = 4” (ARM9) indicates that the multicore settings are
unnecessary.

 If no value is displayed, there may be a problem with the JTAG interface.

 The target processor has no clock.

 The target processor is held in reset.

 A watchdog timer exists which needs to be deactivated.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 27

Hexagon TRACE32 User Guide Using TRACE32

A.3 Debugger window displays flickering data
If the data in a debugger window is flickering, try one of the following solutions:

 Ensure that turbo mode is disabled (using the command “system.option
turbo off”).

 The default JTAG clock speed may be too fast. Try using the command
“system.jtagclock 50kHz”; then if the flickering disappears, try gradually
increasing the specified JTAG clock speed.

 Check that the MMU is correctly programmed. If not, the data displayed may not
be the data you think it is.

A.4 Warning message when stepping into functions
When the TRACE32 debugger breaks/steps into a function, it attempts to read source code
information based on the debug symbols it encounters in the newly-entered function. If the
source code information can’t be found, the debugger will generate a warning message.

If a warning message appears while you are debugging a program, two options are
available for helping TRACE32 find the correct source path:

Solution 1:

Use the following command to remove six path variables and replace them with a string
containing the path to the source code files. For example:

d.load.elf ..\..\build\ig_server.reloc /STRIPPART 6 /PATH L:\user\tools

Solution 2:

Use the command symbol.sourcepath to directly specify the source file. For example:

symbol.sourcepath + L:\user\tools\rtos\okl-1.3.4\libs\qurt\src\qmsgq\sys-iguana\qMsgQClient.c

A.5 Error message “running(off)”
If the TRACE32 debugger displays the message “running(off)” after you click on
Continue, this indicates that a thread continued executing past a stop instruction. (Note
that a thread normally cannot execute past a stop.)

The most probable cause for this event is that the target application crashed, which then
caused the RTOS kernel to execute an assert which stopped all the threads. To debug the
cause of the assert, use the procedure described in Section A.7.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 28

Hexagon TRACE32 User Guide Using TRACE32

A.6 Error message “Emulation debug port fail…”
If the TRACE32 debugger displays the message:

Emulation debug port fail. Unable to set up debugging, ISDB clock off

…this means that no clocks are reaching ISDB (as indicated by the ISDB enable register
field ISDB_CLK_OFF being set to 1).

This usually indicates is that no clocks are being driven to the Hexagon at the point where
the debugger tries to access ISDB. The debugger sets JTAG_ISDB_EN and then polls
ISDB_CLK_OFF; if it does not see the value flip to zero after a period of time, the
debugger gives up.

By default the debugger polls ISDB_CLK_OFF 100 times before giving up. The poll
count can be changed by using the command “DIAG 3003. xxx”, where xxx specifies the
poll count.

NOTE Changing the poll count will affect other timeouts, and may result in strange
behavior if the count is set too high. Note also that the DIAG command is not
supported by Lauterbach.

A.7 Debugging exceptions in the target application
Optimally, the RTOS kernel would respond to a user page fault or unhandled exception in
the target application by performing the following actions:

1. Stop all other executing threads

2. Flush memory

3. Report the register state of the current hardware thread

4. Stop itself

However, hardware limitations in the Hexagon V2 processor prevent the current hardware
thread from immediately stopping the other hardware threads.

Therefore, the best method for catching these exceptions is to set breakpoints on the
following label symbols:

 hexagon_page_fault

 hexagon_error_exception

When the breakpoint is hit, use the debug tools to obtain the necessary register and thread
information from the TCB (thread control block).

Table A-1 shows the memory structure of the TCB.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 29

Hexagon TRACE32 User Guide Using TRACE32

NOTE The information in this section applies only to the Hexagon V2 processor.

A.8 TRACE32 fails with message “bus error”
If the TRACE32 debugger displays the message “bus error” and then fails, this
indicates that either TRACE32 or the RTOS awareness module attempted to access
undefined memory.

The TRACE32 debugger maintains a cache copy of the MMU translations (which are a
superset of the static mapping from ELF files, L4 page tables, and TLB).

The debugger scripts configure the MMU and provide information on the kernel MMU
mapping and the base address for the root task page table. These scripts must be
configured correctly.

The debugger is set to trigger an autoscan whenever it finds a mismatch. This scan
involves the RTOS awareness module providing correct page table pointers. The RTOS
awareness module may not be initialized to the correct physical address. A workaround is
to set only on-chip breakpoints.

Table A-1 TCB structure

Field Description
myself_global Thread global ID

thread_state Thread state
 running (0x2): Thread running or runnable if context = -1
 waiting_forever (-1): Thread waiting to receive IPC from other

threads
 waiting_timeout (0x5): Thread waiting to receive IPC notify from

other threads
 polling (0xb): Thread waiting to send IPC to another thread, which

is not ready to receive the IPC
 halted (0xd): IRQ thread waiting to receive interrupt

partner Thread partner
Contains thread ID of the other thread involved in an IPC operation
(or -1 for a wait-for-message from anyone)

priority Thread priority

context Hexagon processor unit (0-3) that hardware thread is currently using.
Set to -1 if unit not scheduled.

scheduled_unit Hexagon processor unit (0-3) that hardware thread is scheduled to use.

80-N2040-28 Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 30

Hexagon TRACE32 User Guide Using TRACE32

A.9 TRACE32 fails with message “access timeout…”
If the TRACE32 debugger displays the message “access timeout, processor
running” and loses control of the target, this indicates that the debugger has tried to
execute a command that accesses the target, but the target was running.

NOTE This message also appears when the stop of the target does not work (e.g.,
Hexagon is in the OFF state).

A.10 TRACE32 terminates with request for license file
Whenever TRACE32 is started with an unlicensed software component (e.g., processor or
GDI extension), Lauterbach allows 60 minutes of free use, after which the application
automatically terminates with a message stating that a valid license is required.

To use TRACE32 without having to restart it every 60 minutes, you must purchase
licenses for the components in question.

A.11 Running the debugger without the GUI
To start the TRACE32 debugger without the GUI add the following command to the
TRACE32 configuration file (config.t32):

SCREEN=OFF

NOTE Running TRACE32 without the GUI is typically done when a user needs to
execute automated tests.

	1 Introduction
	1.1 Overview
	1.2 Block diagram
	1.3 Reporting problems

	2 Installing TRACE32 Software
	2.1 Overview
	2.2 Install procedure

	3 Starting TRACE32
	3.1 Overview
	3.2 TRACE32 command

	4 TRACE32 Pod Configuration
	4.1 Overview
	4.2 ARM configuration file
	4.3 Hexagon configuration file

	5 Loading Hexagon Images
	5.1 Overview
	5.2 Script files

	6 Configuring The Hexagon Processor
	6.1 Overview
	6.2 Basic configuration
	6.3 Semihosting configuration
	6.4 RTOS applications

	7 Debugging Multithreaded Applications
	7.1 Overview
	7.2 IDSB debug control registers

	8 Debugging Applications on the Software Simulator
	8.1 Overview
	8.2 MCD
	8.3 Installation
	8.4 Quick start guide
	8.4.1 Launching TRACE32/MCD with configuration file
	8.4.2 Configuring MCD with SYSTEM.MCDCONFIG

	A Using TRACE32
	A.1 Overview
	A.2 Error messages “debug port fail” or “debug port time out”
	A.3 Debugger window displays flickering data
	A.4 Warning message when stepping into functions
	A.5 Error message “running(off)”
	A.6 Error message “Emulation debug port fail…”
	A.7 Debugging exceptions in the target application
	A.8 TRACE32 fails with message “bus error”
	A.9 TRACE32 fails with message “access timeout…”
	A.10 TRACE32 terminates with request for license file
	A.11 Running the debugger without the GUI

