Qualcomm

Q ud I COMM Technologies, Inc.

Qualcomm® Hexagon™ C Library
User Guide

80-N2040-13 Rev. D
March 4, 2019

All Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm and Hexagon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other
product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

US.A.

© 2016-2017, 2019 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.

Contents

1 INtrodUucCtion ... ———— 2
1.1 CONVENTIONS ..ieuvviiitiieeeiiieiieeeiie ettt esteesiteeeereeeteeesbeeessaesssaeesseeesssaeesseessseassseeansseansseessseesssennns 2
1.2 TeChniCal @SSISLANCEeccuvieiiieiiieeieeeiie ettt et e tte e e beesireeebeeestaeebae e ebe e saeesnseessseeessaeesaees 2
7 =T Y- 3
2.1 DInNKumM CO9 HDIATYvieiiieiiieciie ettt e e sve e et estbeesaseestbeeesaeessseeesseeesseans 3
2.2 POSIX APIS...iiiieiicieeiee ettt ettt ettt e ta e te e be e sae b e eseenteenreenes 4
3 Using the C library ... 5
3.1 Using standard C headers...........cccueiieriieiiienieniesiesieete ettt seeesee e ssesae b senesnseeseesnseenns 5
3.2 C lIDIary CONVENTIONSc.vvieierieirieeitieeriteeeereeetteeteeessaeeaseeeseessseeasseeasseesseesseesssesessesenssenns 7
3.3 Program startup and termiNation..........c.eeeververcieruerieereereeeesreetesaeessesseesseesseeseesseesseenns 8
4 Characterscccccciiiiinmmeeiisr s 10
4.1 CRATACTET SELS ..veuvviuviertrerieesieesieeteesteeteeteeseesseesseesseestessseasseesaessseassesssesssesssesssessaesssensesssnes 10

4.1.1 Character sets and 10CalES.......cccccuireieriiiieiie e 11
4.2 ESCAPE SEUETICES ..uuvvveeeueiireeeiieeeeiieeeeateeeeetteeeseseeeeasseeesansseesssssseesansseeeasseessnsseeesassseesanns 12

4.2.1 NUMETIC CSCAPE SCQUETICES ..veevvrerrrerrerereerrersreeseasseaseeseesseessessseessessseessenssesssessseessees 13
T T 4 T 21 o) 4TI 14
4.4 MUltiDYLe CRATACTEIS. ... ueiiiiieiiieeiiieitie ettt ete et e e ete e et e e eteeebeeesteeetaeessbeessseeesseesnsens 15

4.4.1 Wide-character @NCOAINGceevuieriieiierieeiieiieteeieeteetee st eseeseeesseessaesseeseenseesees 16
5 Files and streams..........ccccciimmmmiiicisse e —————— 17
5.1 Text and DINATY SIIEAINSccuevuveriririeiieeitesieeiesteeteereesseessesseasessseessessseassessseessessseensens 18
5.2 Byte and Wide StICAIMSccuvieiuiieeiieiiieeitieeieeeiee et e sireeeveesebeeebeeebaeesseeessseensseessseensseeas 19
5.3 CoNtrOllING StICAIMNSeiuiieiiieiiie et eeieeetee et e et e estteetbeeebeeesbeeesbaeesaseessseeesseessseeesseeensnas 19
BB N (o 1] 11 OSSPSR 20
6 Formatted output ... 22
6.1 PrINt fOTMALS....cviiiiieiieie ettt ettt ettt st e st estbeetaessaesstessaesssessaessaessaeseessaensaens 22
6.2 PNt fUNCLIONS ...eeiuiiieiiieiie ettt ettt eetae et e et eeeebeeetaeessbeessseeensaeensaeessneensneas 23
6.3 Print CONVETSION SPECITIETS ...uveuvieiiiiiieiiieeierieeieste st eteeteeeae e etesbeesbeseseassessseenseenseenseas 25

80-N2040-13 Rev. D 2

Hexagon Profiler Tool User Guide Contents

7 Formatted input...........oooee e r s e e e 32
7.1 SCAN FOIMALS......viiiiiiietiieiie ettt e et e et e et e et eeteeeteeeeateeeaseeeseeenneas 32
7.2 SCAN TUNCHIONS ..ottt ettt ettt et e et e et e e et e e etaeeeaaeeeaseeesaeeseeeeaneeeaneas 33
7.3 Scan CONVETSION SPECITIETS .. .veuvieiiiiiieriieeierieeie e et etesteetteebeeaeesbeessessbeessaenseesseenseenseas 34
8 FUNCLIONS ...t s r e s s s e e s e e e e e e e nnnnns 41
8.1 ArUMENE PIOMOTION ...eevviiiutiieiiieeitieetteesteestteeetteessseessseesseessseeesseeessseesseeesssessssesssseesssesans 41
8.2 EXPICSSIONS ..cvviiiiiieiiieetieeetteeiteeetie et e et e e tteestbeesabeessbeesnseesssseesseeesseessseensseenssessnseessseeans 41
8.3 STALEIMEINLSuuiiiiiiie et e ettt e e e e et e e e e e eeettbbeaeeeeseeatreaeeaeeesssbbseeeeeeannnaraeeaaeaas 42
O EXPIreSSIONS........uiiiiiiiiiiiiir s srssnenssssss s s s s s s s r s e s nr s mssm s s s s s s an s e e e s nnnnnnnns 44
0.1 EXPIESSION LYPES .uvevrrrererrieriririiesreettesreasaesssesssesssesssessaessseasaesssesssesssesssesssssssesseesssessaesssens 44
0.2 PIrOMOUING. ...c.vteiieitieiieseeiiettete et eeteeteeteesteestesssesssessaessseasaesssesssenssessseseesssenseenseessennsenns 45
(O J 2 (=T o] oY o= -1 o ' [46
JO.T IMLACTOS . .etteeeeeeeiiiiie e e e ettt e e e ettt e e e e e ettt e e e e e e ttabaeaeeeeeeaatasaeaeeesstssssseaeesansesaeaaeeeeassssseees 46
TO.2 DHTCCEIVES wreeiieriiieeiiie e e ettt e et et e e ettt e e et e e et e e e e ete e e e etae e e etaeeeeaaeeeetaeeeeereeeeesteeennsnes 46
10.3 PreproCeSSING PRASES.eiivieiiieeiieeiieeeteeeeteeeiteesteesveeeseeeesereestseessseessseeensseansseessseesssens 48
B 1T T 1= i] =P 49
T1.T SASSCITN oottt et e e e et e e s 49
L1 TLT @SSEIT uuuiiiiiiee ettt e ettt e e e e e ettt e e e e e e ttttaaae e e e e eatbaaeeeeeeattaaseaeeeeannttaeaaaeans 49
T1.2 <COMPLEX.N™ oottt e et et e e et e e sb e e estbeentaeesaeeenneas 50
11.2.1 abs, fabs, cabs, cabst, Cabs]cooiiiiiiiiiiiiii e 54
11.2.2 acos, cacoS, CACOST, CACOSL....uuviiiiiiiiiieiie e 54
11.2.3 acosh, cacosh, cacoshf, cacoShl..........cccooiiiiiiiiiiiiiiiieece e 54
11.2.4 arg, carg, cargf, Carglccoeviiiiiiieiie ettt 55
11.2.5 asin, casin, casinf, CaSINl........cccc.vvviiiiiiiiiiiii e 55
11.2.6 asinh, casinh, casinhf, casinhl...........cccoovvviiiiiiiiiiii e 55
11.2.7 atan, catan, catanf, catanl..............ccooovvouiiiiiiiiiie e 55
11.2.8 atanh, catanh, catanhf, catanhl.............ccocoviiiiiiiii e 56
T1.2.9 COMPLEX cveiiiiiiiciiiecie ettt ettt et e et e et e e st e e ebeessbeessseeesseessseeesseeesseensseenns 56
T1.2.10 ComMPIEX L .eviiieiiiiiiieiie ettt ettt et e ettt e e abeestbeessaaesnseaens 56
11.2.11 conj, CONJE, CONJL.cuuiiiiiiiiiieiiie ettt et e eebeebbeeseveeenbeaens 56
11.2.12 €08, CCOS, CCOSE, CCOSL...ovviiiiiiiiiiii e 56
11.2.13 cosh, ccosh, ccoShf, CCOSILoooiiiiiiiiiiiiiieeeee e 57
11.2.14 cproj, CProjf, CPIOTL..eceiiiiiieiie ettt et e e aaeeabeaeas 57
11.2.15 exp, CeXP, CEXPE, CEXPL coiiiiiiiieiiieeiie ettt et eere et seveeeebaeeas 57
L1216 Lo ettt e ettt et e e ete e e teeete e e rteeeraaeaa 57
11.2.17 imag, cimag, cimagf, ciMaglcccccuvriiiiiirieiit et 58
T1.2.18 TMAZINATY ..eevvveiieriieiieteeieeieeteesteeteesteeseessesssessseesaesssesssesssesssesssesssenseesssesseensenns 58

80-N2040-13 Rev. D 3

Hexagon Profiler Tool User Guide Contents

T1.2.19 IMA@INary L ...cocoociiiiiieiiieiiie ettt ett ettt e et e e b e esbeeesaaessnaaens 58
11.2.20 log, clog, clogf, CLOGL........oooviiiiieiii et 58
11.2.21 pow, CPOW, CPOWE, CPOWL ...viiiiiiieciieciecie ettt 59
11.2.22 real, creal, crealf, Creallooooeveeiiiiiiiieeeeeeeeeeeee e 59
11.2.23 sin, ¢Sin, CSINE, CSINL...vuiiiiiiiiiiiiiiic e 59
11.2.24 sinh, csinh, c¢SInhf, CSINNL..........oooiiiiiiiiiice e 59
11.2.25 sqrt, csqrt, cSArtE, CSAItL cuviiiiiiiiiiiiie e 60
11.2.26 tan, ctan, Ctant, CLANL...........oooovuuiiiiiiiieeeiieee et e e eeee s 60
11.2.27 tanh, ctanh, ctanhf, ctanhl...........ccoooooiiiiiiiiie e 60
L1.3 SOtYPOI e ettt e e e e etbeetaeenaeeeareas 61
T1.3.1 ASAIMUIML c..euiiiiceee ettt e e e e e e ete e e et e e e eeaae e e eeataeeeeereeeeenns 62
T1.3.2 GSAIPNA.....eiitiiiiicieieectete ettt ettt ettt et stb e et e e teeeab e taesaneereeareen 63
11.3.3 ESASCIL ceuvvieiureeiitie et e et e et e et e et e et eeete e e eteeeeate e taeeeateesaseeenbeeeseeeseessseenseeensseensseenns 63
11.3.4 GSDIANK.......oiiiiiiiitii ettt ettt et et eane e 63
R TR T T1e3 115 o (P USRS PRURURRRPRRN 63
T1.3.6 GSAIQIL cuviiuviiiiieii ettt et ettt ettt e e te e e b e e teesteebe e beenbeebeerbeeares 63
T1.3.7 ASELAPN ceeieeiieiiieceie ettt ettt et e sttt b e e sabe e e aeebeeenbeeenbeeetbeeraeenns 64
T1.3.8 ISIOWET oottt ettt et e et et e e e e eaeeeeteeeteeeeareenareeans 64
L1.3.9 ASPIINE cutieuiiiiieiieie ettt ettt ettt e et e et e st e esaestaesesessaessbesaessaessaessaesseensaessaensaenseenseensens 64
T1.3.10 ASPUINCE...eetieniieiieeiietiete et eteesteeeeeteesteseseessessaessseesaesssesssesssesssessaesssesseesssesseenseens 64
L1311 ISSPACE ..ccutteeiiieeiieeeitt ettt e eteeetee e teeetteeeteeessbeessaeesssaessseeanseesnseeessseenssaensseessseenssaeans 64
L1312 ASUPPET coueieeeiiieeiieeeitt ettt e et e et e et e et e e steeestbeestbeesesaessseeessaesssaeeseeanssaensseessseenssaaans 64
T1.3.13 ASXAIZIL curevieiieiieieeiiete ettt ettt e ettt taestaesra e saesseesseessaenseesseanseenseessennseans 65
T1.3. 14 LOASCII.ueeeiuiiieuiieettie ettt ettt e ettt e e ettt e e et e e e aseeenteeeaseeeeseeeseeereeesaseenssaeans 65
L1.3.15 H0JOWET ettt ettt e et e ettt eeaaeeraeaa 65
T1.3.160 tOLOWET c.eeiieiieciiie ettt et ettt ettt e e e et te st e e esteesnsaeesseeensseensseessseenssaenns 65
L1317 BOUPDET «evveeeeeiiieeeiieee et ee e ettt e e et e ettt e ettt e e st eeeenteeesansaeesenssaeesnssaeesnnsneesesaeeennns 65
I T 10101 o) 13 PSSRSO 65
T1.4 <@ITNO.N oottt ettt ettt eaeeeeaneas 66
T1.4.1 EDOM ..ottt ettt ettt et et e e eae e e aseetae e sreesanaeans 67
11.4.2 EILSEQ ..ottt e e ete e e eaeeeaaeeeeaeeeneeaas 67
11.4.3 ERANGE ... ettt eaeeeaee e 67
L1414 ©ITNIO.eiiieeeiee ettt ettt ettt e ettt e e et e e etb e e e e eabaeeesaseaeenssaeessnsaeeessseeeeaseeeennes 67
T1.5 SECIELS Lottt et ettt ettt e ae e e eaneas 68
L1.6 TRV Lottt ettt et e s 72
11.6.1 FE ALL EXCEPToioiiiiiiciiiieeee ettt ettt ettt sve v 74
11.6.2 FE DFL ENV ittt ettt ettt ettt sas et anesveeevee 74
11.6.3 FE DIVBYZEROoooiiiiiieiieiiee ettt sttt sneensae 74
11.6.4 FE DOWNWARDoooiiiiiiiieiieit ettt s s ae s ssae e sneensee 74
11.6.5 FE INEXACT ...oiiiieiiieie ettt sttt st staesae e ssaessaessaesssensaessnessaenseens 74
11.6.6 FE INVALIDuootiiitiiie ettt ettt et ettt ettt st easetaesanesveenvee s 75
11.6.7 FE TONEARESToooiiiticieete ettt ettt ettt ettt sveeve e 75
11.6.8 FE_ TOWARDZEROccciiiiiiiiiieeieeiece ettt st sreesae s 75

80-N2040-13 Rev. D

Hexagon Profiler Tool User Guide Contents

11.6.9 FE_ OVERFLOW L...ooiiiiiiiee ettt 75
11.6.10 FE_UNDERFLOW ...ttt 75
11.6.11 FE UPWARD ..ottt e 76
L TN O (<) 1A OO OSSR PR 76
T1.6.13 fECIEaICXCEPL ..c.uiiiciiiieeiie ettt ettt ettt et e ettt e et e e ssbeesabeeeseeessseessseessseessseaans 76
11.6.14 fegettrapenable..........coviiiiiiiiie ettt et e eereestaeesebeesenaeens 76
T1.6.15 fEZELEINV ...eiiiiiiiiiie ettt ettt e e et e st eeesbeeessaeesseeessseensseessseessseaans 76
11.6.16 fegeteXCePIlag......iicvieeieeiieiie ettt ettt sa et steessa e saessaesseensaens 76
11.6.17 fe@LIOUNd......ccieeieiieiie ettt ettt e e e e sbeessaensaenseenseensees 77
11.6.18 fEhold@XCEPt. . ccuiiiieiiieiiieciieeee ettt et et siae e sabeeetbeeesreeenreeenes 77
T1.6.19 fOraISEEXCEPE .eevvvierrieeeiiieetiietieestteeieeesiteeeereeeebeesbeessseeessseensseesseeessseessseesssesasseeanes 77
T1.6.200 fESEIEIIV ...ttt ettt et ettt ettt sh e b e st e bt e st e bt e sb e et e e beeneeeneeens 77
11.6.21 feSeteXCOPLIIAZ . ccviiiieiieiieiieit ettt ettt s ae e e e nseenaeennes 78
11.6.22 fESEITOUNA ..ottt sttt et ebe e 78
11.6.23 fesettrapenableccoiiiiiiiiiie ettt et neaeens 78
11.6.24 ftEStEXCEPL .veeerrieetiieiieeiteeeite e et e eteeesteeeteeeteeesebeeseseessseessseeesseeessseensseessseesssaeans 78
11.6.25 feUPAALEENV....cuiiiiiiiieiiieciiieiee ettt ettt e et e e eeetaeeteeessaeeseseeesaeessseeesseaenes 79
L1.6.26 fEXCEPL L .uvievieiieiieiieie ettt et ete e ete st e et staestaestaestteesaessaessaessaesssanseesnesseenseens 79
L1.7 SEIOEN ettt ettt 80
L1.7.1 DBL DIG ciiiiiieiiieeeeee ettt ettt s 80
11.7.2 DBL_EPSILON ..ottt ettt ettt ettt ene e 81
11.7.3 DBL_MANT DIG ...ooiiiiiieiieesieee ettt e 81
11.7.4 DBL MAX ..ottt ettt ettt ettt sttt et ettt et eae e 81
11.7.5 DBL MAX 10 EXP ..ottt 81
11.7.6 DBL MAX EXP ..ottt ettt 81
11.7.7 DBL_MIN Lottt ettt ettt ettt seeebeeseeneense e 81
11.7.8 DBL _MIN 10 EXP .ooiiiiiiiieieee ettt s 81
11.7.9 DBL MIN _EXP ...oiiiiiiiieiet ettt 82
11.7.10 DECIMAL DIG ..cuiiiiiiiiiiitieiiiie ettt ettt e 82
L1711 FLT DIGu ittt sttt ettt s 82
11.7.12 FLT_EPSILON ..ottt ettt et ene e 82
11.7.13 FLT_EVAL METHODocuiiiiiieeee et 82
11.7.14 FLT_MANT DIG...iiiiiiiieiieeieee ettt s 82
L1715 FLT MAX ettt ettt ettt et ene e 83
11.7.16 FLT_MAX 10 EXP .ottt 83
L1.7.17 FLT_MAX EXP oottt ettt ene e 83
T1.7.18 FLT _MIN .ottt ettt et et sa e b e enee e 83
11.7.19 FLT_MIN 10 EXP oottt e 83
11.7.20 FLT _MIN_EXP .ottt s 83
11.7.21 FLT _RADIX .ottt sttt e 83
11.7.22 FLT _ROUNDS ...ttt ettt sttt ettt se et e s eaeenee e 84
11.7.23 LDBL _DIG. .ottt ettt ettt et et eaeeaeenee e 84
11.7.24 LDBL EPSILON ..ottt sttt s 84

80-N2040-13 Rev. D

Hexagon Profiler Tool User Guide Contents

11.8

11.7.25 LDBL MANT DIG ..coiooiiiiiiiieiieie ettt ettt ettt e neeveesane 84
11.7.26 LDBL MAZX ..ottt ettt ettt ettt ettt taesve e sasesve e aaesveeveens 84
11.7.27 LDBL MAX 10 EXP ..ciiiiieiieieeie ettt st sae s saesnesseennee 85
11.7.28 LDBL MAX EXP ..oiiiiioiieiieiieit ettt sttt st ssaesta e saessaenseens 85
11.7.29 LDBL MIN ..ottt ettt ettt ette s ve et e staesaaesteesasataesasesreessean 85
11.7.30 LDBL MIN 10 EXP .oiiiiiiiiiiiieciececeecteetee ettt ettt eve et sve v 85
11.7.31 LDBL MIN EXP ...oiiiiiiieiiiiieie ettt ettt sttt et esveesaaesveeree 85

S 1111 0T 1 SRS SS 86
T1.8.1 IMAXADS, ADS....eeeeiiiiiiiiiieeee et e et e e e et e e e e e et eeeee s 89
11.8.2 IMAXAIV, IV ittt e e e e e e e et e e e e 89
T1.8.3 IMAXAIV. uutiiiiiiiiiiiieiiicciieeetie et e tee et e e ete e ettt eteeeebaesebeeesseesssaeesseeensseensseessseensseanns 89
11.8.4 PRIAS, PRIA16, PRIA32, PRIAGAccueeeeeeeeeeeeeeeeeee e 90
11.8.5 PRIAFASTS, PRIAFAST16, PRIAFAST32, PRIAFASTO64c.ocoovvieveieieee, 90
11.8.6 PRIALEASTS, PRIALEAST16, PRIALEAST32, PRIALEAST64..........ccoveeveen... 90
T1.8.7 PRIAMAX ...ttt e e e ete e e e e eaaeeeaeeeneeans 90
T1.8.8 PRIAPTR ..ottt re et e eaeeeneeans 91
11.8.9 PRIi8, PRIi16, PRII32, PRIIOA..........oeoeeeeeeeeeeeeeeeeee e 91
11.8.10 PRIIFASTS, PRIIFAST16, PRIIFAST32, PRIIFASTO4ccovveveeieceeeeeeeen 91
11.8.11 PRIILEASTS, PRIILEAST16, PRILEAST32, PRGLLEAST64c.ocovvenn. 91
T1.8.12 PRIIMAX ...ttt ettt et e et e et e et e e ete e e areeetaeeeeveesasaeans 92
T1.8.13 PRIIPTR ...t ettt e e eneeeas 92
11.8.14 PRIo8, PRIo16, PRIO32, PRIOOAceeeeeeeeeeeeeeeeeeeee e 92
11.8.15 PRIoFASTS, PRIoFAST16, PRIOFAST32, PRIOFAST64cccvvveveeeiieene. 92
11.8.16 PRIoOLEASTS, PRIOLEAST16, PRIOLEAST32, PRIOLEASTO64............c.......... 93
T1.8.17 PRIOMAX ...ttt ettt ettt et eeae e et eeareeeereeeveeenns 93
T1.8.18 PRIOPTRueiiitiieeteeee ettt e e e eeaeeeneeeas 93
11.8.19 PRIu8, PRIul6, PRIU32, PRIUOScceoeeeeeieeeeeeeeeeeeee e 93
11.8.20 PRIUFASTS, PRIuFAST16, PRIUFAST32, PRIUFAST64ccvvveveieiiie. 94
11.8.21 PRIuLEASTS, PRIULEAST16, PRIULEAST32, PRIULEASTO64....................... 94
11.8.22 PRIUMAXoiiiieie ettt ettt et eeae e et e eereeeevee e 94
11.8.23 PRIUPTRueiiieie ettt e eeaeeenee e 94
11.8.24 PRIx8, PRIX16, PRIX32, PRIXO4coueiieeiieeeeeeeeeeeeeee e 95
11.8.25 PRIXFASTS, PRIXFAST16, PRIXFAST32, PRIXFASTO4ccvveevveveereeeneennn. 95
11.8.26 PRIXLEASTS, PRIXLEAST16, PRIXLEAST32, PRIXLEASTO64...........ccoo..... 95
T1.8.27 PRIXMAX ...ttt ettt ettt et e e e et e e e eateeeereeereeenns 95
T1.8.28 PRIXPTReviiitiieieeeeeee ettt et e et e e e eeaeeeaeeeas 96
11.8.29 PRIXS, PRIX16, PRIX32, PRIXOA.......coooiiiiieeeeeeeeeeeeeeeeeeeee e 96
11.8.30 PRIXFASTS, PRIXFAST16, PRIXFAST32, PRIXFASTO64ccovevvereereennne. 96
11.8.31 PRIXLEASTS, PRIXLEAST16, PRIXLEAST32, PRIXLEASTO4 96
11.8.32 PRIXIMAX . ..ottt ettt ettt et ettt e eaeeeeareetaeeeaveesanaeans 97
11.8.33 PRIXPTR ..ottt et e e e eae e eaae e eeveeeree e 97
11.8.34 SCNAS8, SCNA16, SCNA32, SCNAO4ooeeeeeeeeeieeeeeeeeeeeee e 97
11.8.35 SCNAFASTS8, SCNdFAST16, SCNAFAST32, SCNAFASTO4ccvvvevveene 97

80-N2040-13 Rev. D

Hexagon Profiler Tool User Guide Contents

11.8.36 SCNdALEASTS, SCNdLEAST16, SCNALEAST32, SCNALEASTO64 98
11.8.37 SCNAMAX ..o e et eeee e e et e e e tae e e eeavaeeeeereaaeenes 98
11.8.38 SCNAPTR ...t e ettt e e aaeeaee e 98
11.8.39 SCNi8, SCNil6, SCNi32, SCNIOA.......ooeeviieiieeeeiieeeee ettt 98
11.8.40 SCNiFASTS, SCNiFAST16, SCNiFAST32, SCNiFASTOA4.........ooovevieeeiieen, 99
11.8.41 SCNILEASTS, SCNiLEAST16, SCNiLEAST32, SCNiLEASTO64 99
T1.8.42 SCNIMAX ...t et e e et e e eette e e et e e e eeaaeeeeeataaeeeeraeaeenes 99
11.8.43 SCNIPTR ..ottt ettt ettt e e e eanae e 99
11.8.44 SCNo08, SCN016, SCN032, SCNOOSoviiovieeeeeeeee e 100
11.8.45 SCNoFASTS8, SCNoFAST16, SCNoFAST32, SCNoFASTO4cccueeeennee.. 100
11.8.46 SCNoLEASTS, SCNoLEAST16, SCNoLEAST32, SCNoLEASTO64 100
T1.8.47 SCNOMAX ..ot e et e e e e e et e e et e e e tae e e eeaaeeean 100
11.8.48 SCNOPTR ..ottt et et aae s 101
11.8.49 SCNu8, SCNul6, SCNU32, SCNUO4Soooieiieeeeeee et 101
11.8.50 SCNuFASTS8, SCNuFAST16, SCNuFAST32, SCNuFASTO4cccuvvveennee.. 101
11.8.51 SCNuLEASTS, SCNuLEAST16, SCNuLEAST32, SCNuLEASTO64 101
T1.8.52 SCNUMAX ..ottt e e et e et e e et e e taeeeeeaaeeean 102
11.8.53 SCNUPTR ..ottt et e s 102
11.8.54 SCNx8, SCNxX16, SCNX32, SCNXOSccuviiiiiierieeiee e 102
11.8.55 SCNxXFASTS8, SCNXFAST16, SCNXFAST32, SCNXFASTO4ccvvveeuveenn. 102
11.8.56 SCNXLEASTS, SCNXLEAST16, SCNXLEAST32, SCNXLEASTO4 103
T1.8.57 SCNXMAX ..ottt e et e e e et e e e et e e e e tae e e e taeeeeeaaeeean 103
T1.8.58 SCNXPTR .ottt e aae s 103
11.8.59 SEITOIMAX ..eeeuviiiiieiiiieeteeeett et e et et e et e eteeeteeeetaeeaeeeeaaeeeaseeeaseeesseeeaseeearesanseean 103
T1.8.60 SEIEOUMAX ..eeouvviieeiiiieciiiee e ettt e et e e et ee et e ettt e e eetseeeesateeeesnssaeeanssseesnssseeensseeens 104
T1.8.61 WCSTOIMAX ...uuviiieeiiiieeeiiieeeetie e e ettt e e ee e e e ettt e e et e e e ettt e e eeteeeeeenteeeeeasaeeeensseseennnens 104
11.8.62 WCSTOUIMAXuvvviiiieieeeiiiiiieeeeeeeeite e e e e e e eeiitaeeeeeeeeaeareeeaeeeeeasassseeeeeesnsnrseeaaaeessnsees 104
T1.9 HORW.RS .ottt et et 106
T1.10 <TSOOA60. 0> ...ttt ettt e e et e e eaeeeetaeeeraeens 108
L1101 QN oottt ettt ettt et e e eareeree s 108
T1.10.2 QN0 0 eiieiiiiiieiiieeieeeie ettt e et e e st e e ta e et e e sebeesabeeesbeesaseeeseesssseesseeensseenseeas 108
T1.10.3 DIEANAeeiiiieeeeeeee et e e e e e ete e e et e e et e e eeata e e e eaaeaean 108
T1.10.4 DIEOT.cc.tiiieeii ettt ettt ettt e ettt e et e e ete e eateeeteeeaaeeeareeesseenseeas 108
L1.10.5 COMPL ittt ettt ettt et e st ebeesbeesbeenseenseessesnseseeennns 108
T1.10.0 DO .ottt ettt e e et e ete e eaaeeeteeeaeeeareeetneeteeas 109
L O 10 o PSPPI 109
L1 T0.8 0T ettt e e e e e et e e e e ette e e et e e e et e e e eeataeeeataaaean 109
O R o) o T [USSR OUS PSRRI 109
TL1.10.10 XOT ettt ettt ettt ettt e et e et e et e e eaeeeateeeteeeaeeeeseeesneesseesaseenaseas 109
O 0 0) <« [PPSR 109
T1.TT <HMIES. I Lot e e e et et e e e e etee e e etaeeeeans 110
T1.11.1T CHAR BIT ..ottt ettt aae e aeesbeesaseesevaeesnae s 110
T1.11.2 CHAR MAX ..ottt ettt ettt et s enaessaessbessaesssessaesssesseennns 110

80-N2040-13 Rev. D

Hexagon Profiler Tool User Guide Contents

11.1

11.1

11.11.3 CHAR MIN ..ottt ettt ettt et ete bbb e eaveease e 111
TL11.4 INT MAX oottt ettt ettt sttt ev e et e b e esbe e steeebeestaesbeessesaneenns 111
L1115 INT MIN oottt ettt e teesbaesteessaessaenseensaenseenns 111
I1.11.6 LLONG MAX ..oiiiiieiieeieiiesite st ettt et stee e esteenseessaesseasseesesnseenseessesssesssennns 111
T1.11.7 LLONG MIN ..oiiiiiiiiiiiiieece ettt ettt v sve v eve b e eave e e 111
T1.11.8 LONG MAX ..ottt ettt ettt ettt ettt aeesveebe e steeebeestaenbeesveeane e 111
T1.11.9 LONG MIN L.ttt ettt v et ste b ae b e veeaseenns 111
11.11.10 MB _LEN MAX . .iiiotieiieiieitesie ettt stee e et enbeeseesseesbeessesnsaensaesseessasnsennns 112
LT1.11.11 SCHAR MAX ..ottt ettt sttt ettt et sseeseesseasbeebesnseesseessesssesenennns 112
T1.11.12 SCHAR MIN L.coiiiiiiiiiiiitt ettt ettt ettt et ste b ae b veease e 112
T1.11.13 SHRT MAX oottt ettt ettt v et st te e an b e sveeane e 112
T1.11.14 SHRT MIN . .ottt ettt ettt v et saeete e asebeesaeease e 112
LT1.11.15 UCHAR MAX ..ottt ettt ettt s ense s e ensesnneeens 112
LT1.11.16 UINT MAX ..ottt ettt ettt ettt te e etaenseesseesseasseesesnseenseesseessesnsennns 112
11.11.17 ULLONG MAXiiiitieoiiiiieieeite ettt ettt te v eeveeveeteeabeeaeseveenseesseenveseseeens 113
I11.11.18 ULONG MAX ..ottt ettt ettt ettt eve et e veeaveeabeeaveeene e 113
T1.11.19 USHRT MAX ..ottt ettt ettt vt et e ve bbb enbeeane e 113
2 <IOCAIES ...ttt 114
L1121 LC ALL oottt ettt ettt et a e esbeesteenbeensaesseenseensennns 114
11.12.2 LC COLLATE ...ttioieietettete ettt ettt ettt sv et eensaenseenns 114
11.12.3 LC CTYPE oottt ettt ettt 114
11.12.4 LC MONETARY .ottt ettt ettt et e ve e b e v e e 114
11.12.5 LC NUMERIC ...ttt ettt ettt sae et sseensaense e 115
L11.12.6 LC TIME ..ottt ettt st s ssseenaesneeseaennes 115
L1127 TCOMV 1ottt ettt ettt e te e et eeaeeeaaeeeaveeeesseereean 115
T1.12.8 10CAICCONV ...t et e et e e e e e eaaeeas 119
T1.12.9 NULL..ooeee et ettt eeae e e eeaeeeeaeeenneas 119
T1.12.10 SEHIOCALE ...t ettt et e e eveeearee s 120
3 <MAtNI> et 121
11.13.1 abs, fabs, fabst, TADS]coooiiiiieieeeeeeeeeee e 130
11.13.2 aC0S, ACOSE, ACOSI .. 130
11.13.3 acosh, acoShf, ACOSILcoooiiiiiiiiiiiieeeeeeee e 130
11.13.4 asin, aSINT, @SINLoooiiiiiiiiiiiie et e et e e e e e e e eaaaeeeeseeeaans 130
11.13.5 asinh, asinhf, aSINhlccooiiiiiiiiiiiieee e 131
11.13.6 atan, atant, atanl..........ccc.eviiiiiiiiiiiiee et e e e 131
11.13.7 atan2, atan2f, atan2l...........cccooovvviiiiiiiiiieieeeeeeeee e 131
11.13.8 atanh, atanhf, atanhl.............cccccciiiiiiiiii e 131
11.13.9 cbrt, Chrtf, COItl......oiiiiiiiiieiceee e 132
11.13.10 Ceil, CEILE, COIIL ..vvviiiiiiniiieie et e e e e e 132
11.13.11 copysign, copysignt, COPYSIZNL.....c.ccriririeriieiiiiriiiiesie et 132
11.13.12 €OS, COSE, COSLuiiiiiiiiiiiiiiiiee et e e e e e 132
11.13.13 cosh, COShE, COSIL.......ooiiiiiiiiicc e 132
L1134 dOUDIE taeiiiiiiieiieiieie ettt ettt ettt ettt st et e et eensaense e 133

80-N2040-13 Rev. D

Hexagon Profiler Tool User Guide Contents

T1.13.15 erf, @rff, el e et 133
11.13.16 erfc, erfet, @rfCl...cooiineieiiiieeeeee e 133
LT1.13.17 €XP, €XPE, XPL ciiiiiiiiieiieit ettt st eneesreeees 133
L1 I3018 @XP L0 ettt st 133
11.13.19 exXP2, eXP2L, €XP2] coeiiiiiiiie ettt e s 134
11.13.20 expml, expm1f, eXpmIl....cccoiiiiiiiiiiiiiiie e 134
11.13.21 fdim, fdimf, fAiml........ccoooiiiii e 134
L113.22 flOAE Tttt ettt ettt sttt ettt ee et s ae st e eneene s 134
11.13.23 f100r, lOOTE, TlOOTL. . .eviiiiiieieeeeee e 134
11.13.24 fma, Tmaf,fmalcooooiiiiiiiiieee e 135
11.13.25 fmax, fmaxf, fax].........ooovviiiiiiieeeee e 135
11.13.26 fmin, fminf, fIninl.........cooooiiiii e 135
11.13.27 fmod, fmodf, fIMOALcooiiiiiiiiieeeeeeeeeeeee e 135
T1.13.28 fPCIASSIEY . eeuiieiieiieciieiee ettt ettt et et ebe et et sbeenseense e 136
11.13.29 FP_FAST FMA ..ottt sttt et 136
11.13.30 FP_FAST FMAF ..ottt 136
11.13.31 FP_FAST FMAL .ottt e 136
11.13.32 FP_TLOGBO. ..ottt e 136
11.13.33 FP_ILOGBNANooctieiiett ettt ettt ettt ettt st et seve et ese s esaesssesenenens 137
11.13.34 FP _INFINITE ..ottt ettt st enne e 137
T1.13.35 FP NAN Lottt ettt ettt et e b s e ne e e e seeneeneennas 137
11.13.36 FP_NORMAL ..ottt et 137
11.13.37 FP_SUBNORMAL ..ottt ettt ettt et e 137
11.13.38 FP_ZERO ...ttt st 137
11.13.39 frexp, frexpl, freXPl .cooiiiiieeiiee e 138
11.13.40 HUGE VAL ..ottt st ne s 138
11.13.41 HUGE _VALF ..ottt sttt ene s 138
11.13.42 HUGE VALLoiiiiiiieiee ettt st e e s e 138
11.13.43 hypot, hypotf, hyPotlcccveeiiiiiiiieie e 138
11.13.44 1ilogb, 110gbf, 110@D].....cccuiiiiiiieii et 139
T1.13.45 INFINITY Lottt ettt st sst e s aeeneeneeeene s 139
T1.13.40 GSTINTEE ..ottt sttt et ese e e e aeeteeneenee e 139
L1 13047 ISEICALET .vvevvveereiieeiiesiieeeteteeseeesteesteesseesaessaessaesssenseeseesseessaesseasseesssenseessesnseenns 139
11.13.48 1SErEAteT@qUAL......eevieiieeiieeiecieete et ettt eeeesaeste st e enbeseaesraessaesssesseennns 139
L113049 SINT .ottt st 140
L1 130500 GSIESS.uuieuiiieiieiiiie ettt ette ettt ettt ete e et e e e e e eebeeeabeeesbeesnbaeeseeessbeensbeensseesseas 140
T1.13.5T1 GSIESSEQUAL....cciiiiiiieiie ettt et et e eetae et e e sebeeesseeas 140
T1.13.52 GSIESSEICALET ...vevvvieviieiieeiiieeieeiieeeesiteete st e et etaeeeseetaesnaesstessseeasessaesssesseesssenseennns 140
L B T O 15 4 1 F PSPPSR 140
L B T T 134 1o} ' -1 PSSR 141
T1.13.55 GSUNOTACTEAvviiiiiieeiie ettt e et e aae e e e et e e eaeeeseseensseeas 141
TLT350 JO oottt ettt et et a e et ettt nten e et e teeneenaeneene s 141
Ll L3L57 G ettt sttt neeae s 141
80-N2040-13 Rev. D 9

Hexagon Profiler Tool User Guide Contents

L1358 JMh ettt ettt ettt ettt ettt et e et et e et e te et e ete e b e eareeare e 141
11.13.59 Idexp, Idexpf, IdeXPl....ccviiieiiieiiiciie e 142
11.13.60 Igamma, Igammaf, Igammalccocovrrriiriiieiiieciieiieie e 142
11.13.61 Hrint, Hrintf] IIFINEL ..oc.oveeeeieeeeeeeeeeeeeeeeeeee e e e e e e eaaaes 142
11.13.62 lround, llroundf, Hroundlccooovviiiiiiiiiie e 142
11.13.63 10g, L0GE, 10Z] .oooeiiieeiee e et 143
11.13.64 10g10, 1og10f, IoZ101 ..c.eviiiiiiieieeiee e e 143
11.13.65 10g1p, 10gLPL, LOZIPL ceoeiiiiieciiieieciecie ettt e 143
11.13.66 1082, 10@21, L0Z2] ..oooevieeiieiie ettt 143
11.13.67 1ogb, 10gbf, 10@D1c.viiiiiieiiiecie et 144
11.13.68 Irint, Irintf] Irintl......ocoovveiiiiiieeeeee e 144
11.13.69 Iround, Iroundf, Iroundlcoooreiiiiiiieeee e 144
11.13.70 MATH _ERRNOoiiiiiiiiiiieiiect ettt ettt st seae e 144
11.13.71 MATH _ERREXCEPTccotiiiiieiieiteiececeet ettt 145
11.13.72 math_ errhandling..........cccociiiiiiiiiiii e 145
11.13.73 modf, modff, modfl...........cooovmiiiiiiiiiieee e 145
TL13.74 NAN . e et e e e et e e e ere e et e e e e eteeeanens 145
11.13.75 nan, Nnanfinan]oooovveiiiiiiieeee e 146
11.13.76 nearbyint, nearbyintf, nearbyintlcccocvevierienienieieieeeeeee e 146
11.13.77 nextafter, nextafterf, nextafter]cooovviiiiiiiioe e 146
11.13.78 nexttoward, nexttowardf, nexttowardl...........ccccoveiiiiiiiiiiieiiieeeeceeeeeeee s 146
11.13.79 POW, POWE, POW ittt ettt e e e enaee s 147
11.13.80 remainder, remainderf, remainder]oooovouiiiiiiiiiiieeeeeeeeeeeee e 147
11.13.81 remquo, remquof, TeMQUOL.........cccieriiiiieiieiieie e 147
11.13.82 rint, rINEE, TINEL coooiiiiiiiee et eee e e e e e ee e e e e e eeaaaes 147
11.13.83 round, roundf, roUNdl.........ccc.euviiiiiiiiiiieiie e 148
T1.13.84 SCAID ...ttt enaens 148
11.13.85 scalbln, scalbInf, SCalbINL...........coovviiiiiiiiiiiiee e 148
11.13.86 scalbn, scalbnf, SCAIDNL......c..uvviiiiiiiiiiieee e 148
T1.13.87 SIZNDIL weiiuieiiiiieiie ettt ettt ettt e e te e et e sbeessaesteenseesaenseenseenseenns 148
11.13.88 Sin, SINE, SINL...eiiiiiiiiiiiiiiiice et e e e e e e enaaaes 149
11.13.89 sinh, SINhf, SINNL......ccoovviiiiiii e 149
11.13.90 sqrt, SQILE, SQTtle.eeiiiiiiieie ettt seaeseee e 149
11.13.91 tan, tant, tan].........cooooiiiiiiiieeeeeee et e e e e e 149
11.13.92 tanh, tanhf, tanhl...........ooooiiiiiiiiieii e 149
11.13.93 tgamma, tgammaf, tgammal.............cccoeeviiiiiiieniieiieee e 150
11.13.94 trunc, truncf, trunCloooviiiiiiiii e 150
LL1.13.95 W0 oottt ettt ettt ettt et e et e e te et e e taenbeenreenneenns 150
LL1.13.90 Y1 oottt ettt ettt et e et e et e e teenbeenta st e enseenneenns 150
L 0 s PRSP 150
T1.14 <SCAICHLI™ .o e et et eeeaea e 151
T1.T4.T RCT@ALE....uviiieeeiieeeeeee ettt ettt e e et e e e e eaae e e e eaaeeeeetteeeeentaeeeesaeaean 151
T1.14.2 NACSIIOY 1ovieiieieieiie ettt ettt ettt e st e e e b e essaesteenbeensaenseenseenseenns 151

80-N2040-13 Rev. D

10

Hexagon Profiler Tool User Guide Contents

L1143 NSCAICH ...ttt et e s aeeseenaeneene s 152
L R v 1S] 1< TSRS SPRURSRRON 152
LLTALS tINA ettt s 153
T1.14.6 £SCAICHuiiiiiiiciii ettt ettt ettt e e e sbe e s abeeebeeesseeensaeensseenseeas 153
LT TALT AWALK ceeeeeeee ettt ettt st st te b ne e ne s 153
L BT 110 o 2o TSP 154
L T) 1Yy 01 o USRS SRPRR 154
L1 L5.2 SELJIMIP . eeiieieiieiete ettt ettt ettt sa e ettt e e be st st et e eaeeseeneeeennens 154
T1.16 <SIZNALIS ..ottt ettt ebe e et eebe e e abeenneeeneeennes 155
LLoT0.1 OIS ..ottt ettt ettt et ettt b ettt e se st et seesbe e e seeaneas 156
T1.16.2 SIZ ALOMIC Tuvvevuieiieriierieeiieieeieenteeseesteesreessessseesseessessseassesssesssesseesssesseesssesseenses 156
T1.16.3 SIGABRT ..ottt ettt e s s eneennas 156
T1.16.4 SIGFPE ...ttt ettt et ee e 156
L1.16.5 SIGILL ...ttt sttt s st naeeeesne e 156
L1.16.6 SIGINT ..ottt e e e 156
L1167 SIZNAL..eitiiiieiieieeee ettt ettt et e e et nt et e seeeeeneenseeeeeneas 157
T1.16.8 SIGSEGV ..ottt ettt ettt ettt nae s eneeneas 157
L1.16.9 SIGTERM ..ottt ettt ettt ettt eae s 157
L1.16.10 SIG DFL ..ottt sttt nne s 157
T1.16.11 SIG_ERR .oeiiii ettt st ne s 158
T1.16.12 SIG TGN ..ttt ettt et e et e e e se st eneennas 158
L AN T 1 0 1 PSPPI 159
| R 7 T - OSSP RPN 160
L1 17,2 VA COPY autteeiiiiiieaiieeeeeiteeeetteeeettteeetteteeaaaeeenasaeeeesseeesanseeesanssaesanssaeesnssseesansaeens 160
L B T 7 T U B PSPPSR 160
L B - T §) SO UUPTORPSRURRSR 160
| B T 7] 2 o OSSR 160
T1.18 <StADOOLNS ..ottt s e e e et enraeesaee e e 161
LLI8T DOOL ettt sttt ene s 161
LLL8.2 alSC ..ttt ettt sttt st ee e ene e 161
L 30 T 5 1 TSRS SRUPRUPSRRSTIT 161
T1.19 <StAAETIN™ oottt ettt ettt et ne e 162
LLoT9.T NULL ettt ettt st e s ae st eneeneeae s 162
L1192 OfFSEOT ...ttt st 162
L1193 ATttt ettt sae e e ne s 162
T1.19:4 SIZE fniiiiieieiieieie ettt ettt ettt et sa et neene et e et st et e teseeneeneennen 162
T1.19.5 WCRAT tuiiiiiiiiiiieiieeete ettt ettt ettt e et eete b e essaesseenseenseenns 162
L1200 SSEAINERS Lottt ettt ettt 163
11.20.1 INT8 C,INTI16 _C,INT32 C,INTO4 C..ooovrrieieieieeeeeeeee e 165
11.20.2 INT8 MAX, INT16 MAX, INT32 MAX, INT64 MAXccoooverrrieeennne 165
11.20.3 INT8 MIN, INT16_MIN, INT32 MIN, INT64 MINccccvvrrrrrrienrrennn, 165
11.20.4 int8 t, int16 t, iNt32 t, INTOA t.ocuiviiiiriieiieiieiieie et see e eee e e 165

80-N2040-13 Rev. D 11

Hexagon Profiler Tool User Guide Contents

11.20.5 INT_FAST8 MAX, INT FAST16 MAX, INT FAST32 MAX, INT FAST64

IMLAX ettt ettt h et ettt et e a e et et e teen e n b et e eneene et e eae st eneentens 166
11.20.6 INT _FAST8 MIN, INT FAST16 MIN, INT FAST32 MIN, INT FAST64
IMIIIN Lttt ettt h e h ettt h e et n bbb et e b bt e at et et neeneeees 166
11.20.7 int fast8 t, int fastl6 t, int fast32 t, int fast6d t........cccooevvieniiievieennieennen. 166
11.20.8 INT LEAST8 MAX, INT LEAST16 MAX, INT LEAST32 MAX, INT
LEASTOA MAX ..ottt sttt ettt et b e st e ettt ae e ae e 166
11.20.9 INT LEAST8 MIN, INT LEAST16 MIN, INT LEAST32 MIN, INT
LEASTOA MIN ...ttt ettt sttt sae bt nae e 167
11.20.10 int least8 t, int least16 t, int least32 t, int least64 t........cccocerviroenvnenen. 167
11.20.11 INTIMAX Coroeeeeee ettt sttt st sttt neenne s 167
11.20.12 INTMAX IMAX ..ottt ettt sttt ettt s ee e 167
11.20.13 INTMAX MIN Lottt ettt s 167
11.20.14 ANEMAX T utiitiiiiieitieie ettt ettt ettt sttt ettt etesbe st e enaeneenneas 168
11.20.15 INTPTR MAX .ottt ne s 168
11.20.16 INTPTR _MIN L..oiiiiiieee ettt 168
T1.20.17 ANEPEE £ ettt et ettt sa e et et e e see et sse et e s aeeseeneeeennens 168
11.20.18 PTRDIFF MAX ...ttt st et eneeneene s 168
11.20.19 PTRDIFF _MIN ..ottt 169
11.20.20 SIG_ATOMIC MAXiiiiiieeee ettt st nee e 169
11.20.21 SIG_ATOMIC MIN ..ottt 169
11.20.22 SIZE MAX .ottt ettt sttt ese e ae e teese e neeneas 169
11.20.23 UINTS8_C, UINT16_C, UINT32 C, UINT64 C ..cooeiiiieeiceeiee e 169
11.20.24 UINT8 _MAX, UINT16_MAX, UINT32 MAX, UINT64 MAX................. 170
11.20.25 uint8 t, uintl6 t, uint32 t, UINO4 ...ccoevoviereerieiieiieie e e seve e 170
11.20.26 UINT FAST8 MAX, UINT FAST16 MAX, UINT FAST32 MAX, UINT
FASTOA IMAX ..ottt ettt et ettt s et e et e eae e e e seeseeneensenseenis 170
11.20.27 uint_fast8 t, uint fastl16 t, uint fast32 t, uint fast64 t..........ccccoemiinnnenn 170
11.20.28 UINT_LEAST8 MAX, UINT LEASTI16 MAX, UINT LEAST32 MAX,
UINT _LEASTO4 MAX ...ttt ettt ettt ettt e se s s e ae e 171
11.20.29 uint least8 t, uint least16 t, uint least32 t, uint least64 t.........ccccocevenenn. 171
11.20.30 UINTMAZX Cooeoeeeeeeeee ettt sttt ae e sne e neenne s 171
11.20.31 UINTMAX MAX ..ottt ettt ettt see e sesesneeneeneens 171
11.20.32 UIEMAX Eeitiiiiiiiiiieieeiiesie ettt ettt ettt et e bbbt et e e sbe et ennesbeeneeneas 171
11.20.33 UINTPTR MAX ..ottt st st e 172
11.20.34 UIIEPIT T eeeiiiiieiieieeie ettt ettt ettt ettt s sbeenaeeeeeneas 172
11.20.35 WCHAR MAX ..ot s 172
11.20.36 WCHAR MIN ..ottt 172
11.20.37 WINT MAX Lottt sttt sttt eneeneenne s 172
11.20.38 WINT _MIN .ottt sttt s sne s 173
L1271 SSEAI0.N> ettt 174
L1.21.1 BUFSIZ ettt st et 175
L2122 CLEATEIT ...ttt sttt st eaeeae e 175
L1213 EOF ettt sttt ettt st 176

80-N2040-13 Rev. D 12

Hexagon Profiler Tool User Guide Contents

L1214 £CI0SC . cueentiteetteee ettt ettt sttt ne st e ae et neeeeene s 176
L B T 10) USRS SRR 176
L S BT 1<) 0 U) PP SRPSTPRR 176
L1217 TSR ottt s 176
L R 1 (TSR 176
T1.21.9 £ZELPOS wneineitieiieie ettt ettt ettt sa ettt et e st st et e ebeeseeneeneenens 177
T1.21.100 £OES ettt ettt ettt e et e st e ne et esteeaeeseenseeeeeneas 177
LL21.11 FILE oottt sttt s 177
11.21.12 FILENAME MAZX ... oottt st 177
T1.21.13 fOPCI cenitieiieee ettt ettt ee et e sttt ent e teeee st enaeeeeenens 178
11.21.14 FOPEN_MAX ..ottt sttt ettt eneeneas 179
L U BT 4o T AP SUPSTURRSO 179
T1.21.0160 APTINEE ittt st e e e 179
L1217 APULC oottt ettt st ene s 179
L2118 APULS oottt ettt et ettt sa e et et et et e e st st e teeeeeseenseeeeenens 179
L B L A & - T TSRS SPSTURRS 180
T1.21.200 fTEOPEI .ttt ettt et ettt se et e e ee st eneesesaeeseenaeneeeneas 180
TL.21.21 £SCANT ..oiitiiiiicieciie ettt ettt ettt et e et e e beenbeensaesbeenseenseenns 180
L1.21.22 £5@CK ettt sttt 181
T1.21.23 £SCCKO ..eicuveeieieieriteeiesties ettt e sttt et et e bt e e e e esbeesseeseesseesseenseenseesseansesnsennns 181
L1.21.24 £8@EPOS c.eiutieieieie ettt ettt ettt ettt ettt sa e bttt et e et ent et e teeneeneeeennens 181
L DR T) TS SRSRPRSRRSR 182
L1.21.260 FERILO .ottt sttt 182
L2127 AWIIEC ittt ettt ettt ettt st et neeene e 182
LL.21.28 GOEC ettt ettt ettt ettt sttt e e bbb e ae ettt ene s 182
11.21.29 getc UNlOCKEd.......iiviiiiiiiiii et e etre e e s 182
T1.21.30 @OLCHAT ..eeiiiiiieceiieeteeee ettt ettt ettt e e te e et eesbeeessbeensseesssaensneas 183
11.21.31 getchar unlocked.........ccveviiiiiieiiiiieeeeitee et 183
L B I £ OO 183
11.21.33 TOFBEF ..ottt 183
11.21.34 TOLBF ..ottt sttt e eeene e e eaeeneas 183
11.21.35 TONBF ..ttt ettt ae s eneas 184
J 0 R T T O 01 o) - o O PSSO US PR 184
L1.21.37 NULL ..ttt sttt ettt sttt ettt et eneeneas 184
L G B T ¢) PSSR 184
T1.21.39 PIINEE ottt ettt ettt e eaeene e neene s 184
T1.21.40 PULC 1neetieeeee ettt ettt ettt et et se e e et e e e st e e st eneensesaeeseeneeneenneas 184
11.21.41 putc UNIOCKE......cvieiieeiiieiieciie ettt e st ssae e enes 185
T1.21.42 PULCRAT 1..eeeiieiieiie ettt ettt ettt et e st e esbaesteenseessaenseensaenseenns 185
11.21.43 putchar UnloCKed........ccveviiiriieiiieiiecieiietee et s 185
T1.21044 PULS. .ottt ettt ettt et e st et e st es e s e e st eseese e beseeneeneenseeneeneennas 185
L1.2T045 TEIMOVE ..ottt ettt ettt ettt sttt ettt et e ettt ebteesabeenbeees 185
LL.21.46 TENAIMIE ...oeouvvieeieeiiieiie e ettt ee et e et eeeteeebeeeateeeteeenaeeeesbeesaeesneeesseesseeesnseennseenn 185

80-N2040-13 Rev. D

13

Hexagon Profiler Tool User Guide Contents

T1.21.47 TEWINA ...eoiiiiii ettt e et eaae e eaeeenneas 186
T1.21.48 SCANT.....oiiiieiiiieceeee et e e et e et e e et e e e eaaaea s 186
11.21.49 SEEK CURooiiiiiieiecietete ettt ettt steesba e nseensaense e 186
11.21.50 SEEK ENDooiiiiiiiiieiiiieee sttt ettt a e s enne e 186
T1.21.51 SEEK SET ..oiiiiiiiiiiectt ettt ettt ev et e te et et beeve e e 186
T1.21.52 SEtDUTL ..o ettt et 186
T1.21.53 SEUVDUL oo et 187
L A U/ USRS 187
LT1.21.55 SHPTINEE....oiiiiiiieiie ettt ettt e e e e nbe e sa s e ensaenseenns 187
T1.21.56 SPIINEE...ccuiiiiiiiiiiicctieteecte ettt ettt r e et e steeeteeteesbeesbeease e 187
T1.21.57 SSCANTeiiiieieceee e ettt 188
T1.21.58 SEACIT .o ettt e et e e ennens 188
T1.21.59 SEAIN weiiiiiiiiee ettt ettt er e ettt e et eaneas 188
T1.21.60 STAOUL ...eveiieeiiiciieeeeeeeeee ettt ettt ettt et et e et e e easeeaaeeeaneeeaneas 188
TL21.61 tMPTIILE..cuiiiiiieiiciieceecteece ettt ettt et teebe e te b e e reease e 188
T1.21.62 TIMP MAX . .c.eoiitiioiiectee ettt ettt ettt ettt ettt v e e ste e ste e te e tsebe e teeaseenns 188
T1.21.63 TMPNAIN c..eoutiiitiirieciieti ettt ettt et eete et e e eteeebeebeesseesseesteesbeesseesseesseesseenns 189
LL.21.64 UNGELC. .. ueeeiieeeiie ettt ettt e et e e tte et e ettt et e e setee st eessteesnteeeseesnseeensaeesnseesneas 189
LT1.21.65 VEPTINEE .c.eiiiiicieie ettt ettt et te e ens e sbeesseeneeenns 190
T1.21.66 VESCANT ...oocviiiiiiiiiie et et 190
LL.21.67 VPIINEE Lottt ettt ettt ettt et sb e b e steeebeeteesbeesveease e 190
T1.21.68 VSCANTooiuiiiiiiiieeeeee e ettt e e enaens 191
T1.21.69 VSNPIINLE...c.eiiiiiiieiieiieeieeesee sttt ettt e e aesteenba e saesseensaenseenns 191
LT1.21.70 VSPIINEE....oeiiiiieiiie ettt ettt ettt et a e et e e te e b e essaesseensesneeenns 191
T1.21.71 VSSCANT ..ottt ettt et eaneas 192
T1.22 <SEAIDNS ..o e e 193
TL.22.1 @OAL ot eneas 195
T1.22.2 @DOTT ..uiiiieiieeeeie ettt ettt et te et e et et e e eraeearaean 195
T1.22.3 DS ittt et et eae e e taeerae s 196
T1.22.4 QEEXIT cuvveeeeeeeeeiee ettt ettt ettt e et e et e et e e eaaeesateeeateeeateeeseeenseeeaseeetseenreean 196
L1225 @EOT .o et an 196
T1.22.6 @LOT weeiuviieeeeeeeee ettt e e et e te e et e e et e e e e aeeeaeeas 196
L1227 @EOL ottt ettt et ettt et eeaae s 196
T1.22.8 @LOIL ..ttt et ettt e eaaeeaee s 197
T1.22.9 DSCAICHveietiiieieeeeeee ettt ettt et et as 197
T1.22.10 CAILOC . uuiiiiiiiieeeieee ettt e e e e et e et e e e aae e e eeaaeeean 197
TL.22.11 @AV e ettt et an 198
TL1.22.12 IVt ettt sttt ettt e e e st e beesseebeenbeenseenbeenseennennns 198
T1.22.13 drand48oooeeieeeeeeee ettt ettt e et ere e rae s 198
T1.22.14 @0V ittt et et e e et e e et e e et e e ereeereean 198
T1.22.15 €randd@oooeeioeeeeeeeee e et eaaeas 199
T1.22.16 @XIt oouiiiiiee ettt et e et e e eaeeeree s 199
LL.22.17 EXIbiriiiiieciecieciee ettt st ettt et et e e e s e ensaeseenseesseenseanseesseansesnsennns 199
80-N2040-13 Rev. D 14

Hexagon Profiler Tool User Guide Contents

11.22.18 EXIT FAILURE......coiiiitiiiiiiicit ettt ettt et e 199
11.22.19 EXIT SUCCESS ...ttt ettt ettt ettt ete v v ve b eaveeene e 199
T1.22.200 FOVE ettt et ettt et e e e et e e et e e eaae e ereeeareean 200
T1.22.21 € ottt ettt ettt e e reeeaae s 200
T1.22.22 GOV ittt ettt ettt ettt ettt et ettt e e teeebeebe et e esbeesteeebeesbeesseenbeeare e 200
T1.22.23 GELCIIV..eicuiiitiieeieetteetieete ettt ett e ettt e et te et e b e e teeabeesbeebeesbeesbeesbeenseesseenreseseenns 200
T1.22.24 @ESUDOPE.....viiieiieciiieiee ettt ettt ettt et e e sttt e st e e esbeeeaaeeesseeessseensaeessseensseas 200
T1.22.25 JrandA8c.eeeeieiieeiieiteeeete ettt ettt ettt e et et e esbeeste et e e sa b e enseenneenns 202
T1.22.26 L1O4Q ..o ettt ettt eareas 202
L1.22.27 T8DS...eeiiceeeeeee ettt et e eaae s 202
T1.22.28 TCONZAS ...ttt ettt ettt ettt et ettt vt e e et e eebeeabesaseeaseereeeaseeaeeens 202
T1.22.29 T18DS ..ottt eteeeaaeas 203
T1.22.30 1ALV ettt ettt ettt et e te et e e et e e eare e eraeenreean 203
T1.22.3T1 T1AIV ettt ettt ettt et et eere e e eateeaeeeeaseeeaneas 203
T1.22.32 101Vttt ettt ettt ettt et e b e e te e steete e taesbeeaeeaseenns 204
T1.22.33 T1AIV_ turiiitiiiiiiciecie ettt ettt ettt et v e sbeeabeesteeebeesteesseesvesaneenns 204
T1.22.34 TrANAA8 ... ettt 204
11.22.35 MALLOC . eviiieiieceiee ettt ettt ettt et et e et e et e et e ereeenreas 204
11.22.36 MB_CUR _MAX ..ottt ettt ettt st e s naesnseseaeeens 205
11.22.37 MBI vttt et ettt aeeeree s 205
11.22.38 MDSTOWES .uvviiieeiiiiie ettt e e ettt ettt e ettt e e e ettt e e e eae e e e eataeeeaaeeseasseeeeasaeens 205
11.22.39 IMDEOWE weeiieviieeeie ettt ettt e et e e e aae e et e e e e e eaaeeeaeeeereeenneean 205
11.22.40 MKSEEIMP...c.vieiieiieiieieeiieieeieesteereeiesreesbeseaeesbeesaessaesseesssesssensaessseseesssesseenses 206
L B 10173 1Yo SO SRR 206
11.22.42 MIAnd48ccoveieeeieeee ettt ettt et ettt eraeerea s 207
T1.22.43 NTANAA ...t e e e et e e ereeeaee s 207
T1.22.44 NULL.....oiiiieeeeeeeeeeee ettt e e e e e eae e eteeeereeenneean 207
L1.22.45 PULEIIV .oeviiiieeieciieeiiesite ettt et e stae st e saestaestaestaessaessaesseensaesseensaenssenseensaenseenns 208
L1.22.40 QSOTL cuvviieieiieeieeieeeiesieesteteestteste e teeste et eessaesseessaenseansaesseasseessesnseenseesseassennsennns 208
T1.22.47 TANA ..oiiiiiiiiieiceeeeeeeee ettt et e e ettt e e e ateeaae s 208
11.22.48 RAND MAZX ..ottt ettt ettt v et s te e te e ab b e veeave e 208
T1.22.49 TANA Tuutiitiiiiiiieiiiicceece ettt ettt ettt ettt be e te e ebeebeesteete e tsesbeebeeaseenns 209
T1.22.50 TRAILOC ..ttt ettt ettt e eae e et e e e e easeeeaneas 209
T1.22.51 SEEAAG ...ttt et ettt e e reeeree s 209
L1.22.52 SIZE tucuiiiieeieeieeiieeiesite et et et e st estee st e e e ta et e e saenseenseeseesseesseenseanseesseansennsennns 210
T1.22.53 STANM.....oiiiiiiiiieeeeee ettt e et e et e e e et e e e et e e e e tt e e e eeareaean 210
T1.22.54 STANAAS..... .o et eanens 210
T1.22.55 SETOQ .oiiuiiieeiiceii ettt et ettt et e e e ereeeaeeeaeeeeaseeeaneas 211
T1.22.56 SEITOT...coeiiieeie e ettt et et ev e et e e abeeeaaeas 212
T1.22.57 SETOL.ueiieiiieiiee ettt ettt et e e e v e e eaeeeaeeeeaseeeaneas 213
T1.22.58 SEITOLAeeiieeieceeee ettt et eae e et eeeaeeeneeas 213
T1.22.59 SEITOIL .ttt et eeae e e e e e eaaeeenneas 214
T1.22.60 SEITOUL....eoiiiuiiiieiieciiecee ettt ettt ettt et e e e eveeeeaeeeaeeeeaseeeaneas 214
80-N2040-13 Rev. D 15

Hexagon Profiler Tool User

Guide Contents

T1.22.61 SEEOUIL et ettt ettt et 214
T1.22.62 SYSTOIML .eeutiiutieiieiiteteete ettt ettt et ettt ettt et et e st et e eateemtesbteesbeabeesaeesaeenaee 214
0 R T 1S3 1010 0 -1 PSSO 215
L1.22.604 WECRAT £ .iiiiiiiiiieieee ettt sttt et nne s 215
11.22.65 WECSTOIMDS «..eouiiiiieiieie ettt ettt ettt st e et e saeeeee 215
T1.22.60 WECLOIMD ...ttt ettt ettt ettt ettt ettt et e eaee e 215
T1.23 SSEINEZI oottt e et e e sta e e s ab e e tbeeenbaessbeeeaeeennes 216
L1.23.1 INICIMICCPY -vteenvreetereritiesieeeeteeeteeeetteeteeesteeeteeensaeesnteesnseesnseesnseeeseesnsseanseeennseennsens 217
11.23.2 MICINCHT .ttt sttt s seesne e 217
L 0 T 44151 14157 1| o SO RPRR 217
| R R 40 1S) 14167 o) USSR 218
11.23.5 MEIMCPY V eeuiiiiieiiiieeeiiiee ettt e et e e et te ettt e st eeeastaeesannbeeeennsaeeennssaeesnsseeesnnseeas 218
11.23.6 MEIMIMOVE ..ottt ettt ettt et ettt ettt ettt et e be sttt saeesae e 218
L1.23.7 MEMIMOVE V .eeetiiiiiiieiieeeiiieiieesteesiteeesteesteeeateestaeenaeeeestesseeesneeeasseessseesnseesnseenn 219
L R I 11 1S5 1 o <] AU RRUSOSOTRRRPR 219
T1.23.9 INULL ..ottt ettt ettt ettt et ettt ettt e et e eneeenee 219
T1.23.10 SIZE tuueiiiuieiiieiieitie ettt ettt ettt e bt et et et ettt et et e et e eaee e 219
20 T I N 0 o7 1] o3 11 o PSSR 219
TT.23.12 SEECAL.c..eiiuiiiieeeerte ettt ettt ettt ettt et e sae ettt et e 220
L1.23.13 SEICHT -ttt ettt sttt st e e e e 220
T1.23. T4 SEICITIP wettieiieeiie ittt ettt ettt st et et e bt e bt et et e st e et e e sbeembe e bt enbeenbeeneeenee 220
T1.23.15 SEECOIL oottt ettt ettt ettt e 220
L1.23.16 SEICPY teeetreeeueieeieieeiiestteette et e eette et e e stee e st e e bt e e sateesabeesnteesnteeenseesnseeenseeennseenseens 220
I TR A w1 o) PSSR 221
L1.23.18 SIIAUD wntentitieiieie sttt ettt ettt et ettt b ettt ee st etesee bt enaeneenneas 221
L1239 STIETTOT «eeeieniiieieieeeiiteite ettt ettt ettt ettt st e st e st e st eabeeebbeenbeean 221
| OO N S 5 <y () S QPSPPSR 221
T1.23.21 SEIICAL coviieiieie ettt este e e sbeenseenseenns 222
T1.23.22 SEICPY wreeereeiiieieeiie ettt sttt sttt e st e e b e e ste e b e essaesseenseenseenns 222
T1.23.23 SEIOI oottt et sttt 222
11.23.24 SEIMICASECITIP .eeieuviiieeeuiiieeeiiieeeeiteeeesettteesaaeeentbeeeassseeeeaaeeesennsaeeannsseeennsseaesnseeas 222
T1.23.25 SEMICAL.c.eeiiiiieitiieeittet ettt ettt ettt ettt et e et e et e sabeenatees 223
R TR ST w1 Led 1110 SRR SR 223
L1.23.27 SHTICPY evveeeuveeeurieeiientteeitteetteeeiee ettt e steeesseeansaeesaseesaseeenteesnseeesseesnseansseesnseennseas 223
11.23.28 SHPDIK ..ottt e 223
T1.23.29 SHTCRT ..ottt ettt ettt et ettt e 224
T1.23.300 SEESPIN.uitiieeiiiiieeiieeeeiitee ettt e e et e ettt e et e et e e e eteeeeenabeesesseaeensseesnsseeeeseeeenn 224
T1.23.3 1 SISttt ettt ettt et ettt e sbe st ettt 224
L1.23.32 SIEOK 1ottt ettt st 224
11.23.33 SIEOK T ueiiiiieieieeteee ettt et 225
T1.23.34 SEXITII 1ottt ettt ettt et ettt e e e 226
T1.24 <SEINES. NS 1ottt et e e et e e e tb e e ta e e s baessbeeeteeetaeesraeanes 227
L1 24T DOIMIP weeviieiieeiie ettt stte ettt ete e tte st et esaesbeessaenseensaesseesseessessseanseessennsensnennns 227
80-N2040-13 Rev. D 16

Hexagon Profiler Tool User Guide Contents

L1.24.2 DCOPY wrveeeeeeiiieeiiieeiteete e et e et e et e et e e steeetaeeteeessbeessseeesseessseeenseessseeensaeesseensseas 227
T1.24.3 DZEIO ettt ettt ettt et se e ae et ene et e ese st eneesseseeneeneennens 227
L1244 1S oottt bttt ettt s 227
L1245 NACX 1.eieiiieitieee ettt ettt ettt ettt se e neene s 228
T1.24.6 TINACXK .ottt ettt ettt ettt et e sae e bt et e st eae s st sseentessesesseeneeneens 228
T1.25 <SYS/STAtN™ .oiiieiiiciece ettt et et e e tbe et e enaa e 229
T1.26 <SYS/HIME.N> ..oiiiiiiiiiiee et et ettt e eeta e e st e e sb e e etaeennseesneeennes 232
L1.27 <SYS/HIMES.> L.oiiiiiiiieiie ettt ettt et et e b e e te e s e e seenseensaenseenns 233
LR TS 7 10T 1 s N RSP URPRRP 234
L1281 BCOS cuteutetitieieete ettt ettt ettt et ettt ettt et e st e s e eeeene e e easesseeneenteseeseeneenseeseeneas 240
T1.28.2 BCOSN 1.ttt ettt ettt ettt ettt en et te b enae e ne s 240
T1.28.3 CAIZ weeieeiiiie ettt e e e e ettt e ettt e ettt e e e teeeeenabeesensseeeensseeeennsaeeeasaeeean 240
TT.2804 @SIN ittt ettt ettt ettt et et ettt et st 240
T1.28.5 @SINN ..ottt et 240
L1280 BLAN....ouiitiitieeieieie ettt ettt ettt e et se e e sa e beene et et e st bt ententebeeneeneennens 241
L1287 AEANDioiiiiieie ettt ettt ettt ettt ettt ettt e et eeteeae st enaeeeeeneas 241
T1.28.8 AtANN....uieuiiiieieiee ettt ettt ettt e et et e eeeene s 241
L1289 €I ettt ettt et 241
LL28.100 COIL -ttt sttt et ettt ene s 241
LL.28.1T CHMAG e eueeeiiieeiiie ettt ettt e eite ettt et e ettt et e e et e st eeenteeenteeeseeenseeensaeennseennnens 242
T1.28.12 COMYJ 1ttt ettt ettt ettt ettt et e st et e eaeese e e ensesseeneeneenseeaeeseensassennens 242
T1.28.13 COPYSIIauiriiiiiieiiieiieeeiteriteeeteeeteeesteeetaeetaeeseseesaseeesbeesssaeesseeessseensseensseenssens 242
LL1.28.14 COS ettt ettt ettt ettt a ettt h bt sttt enee e ene s 242
L1285 COSI . uititieeee ettt s 242
LL1.28. 10 CPTOJ eevrierieiieeiieriieeiiesttesiteteestaesteessaesseesseessaesseesssenseeseesseessaesseansaessenseeseensennns 243
L1287 CTCAL oottt ettt ettt et e et en et eeeeeneenaeneene s 243
TL1.28.18 @I ettt ettt ettt en et aeebe e e e ne s 243
L1281 @IFC -ttt sttt ettt a e 243
L1.28.200 ©XP -eeuteeueemieieeteet et ettt ettt ettt ettt s b et s et b e st e e et b e en e bt ae et et beeneennes 243
LL28.21 @XP2 oottt ettt et s ettt neeene s 244
T1.28.22 @XPIMT ottt et ettt ettt et ettt ent e te e aeeneenaeeeeeneas 244
T1.28.23 £ADS. .ttt ettt ettt e n ettt naeeneeneennan 244
T1.28.24 £ttt st 244
L1.28.25 £lOOT ..ottt ettt ettt ettt et sttt et eeae s 244
T1.28.20 fIM@ oottt ettt ae s 244
T1.28.27 fIMAX cueiiiiieiieiee ettt ettt ettt et ettt e ae e e e st nt e teeee et eaeeeeeneas 245
T1.28.28 fIMM ...ttt et ettt et et e st st et e e teebeenaeeeneas 245
T1.28.29 fIMNOA ..ttt 245
L1.28.300 fTOXD cueetintieuietete sttt ettt ettt ettt ettt st b et e et b bttt sttt e e ne s 245
L1.28.31 YPOL -ttt sttt sttt sttt e neenne s 246
T1.28.32 10@D cueititieiieee ettt ettt sttt et en et e aeere e e eene s 246
T1.28.33 TACKD weeutitietieieie ettt ettt ettt ettt ettt ea e et e e e sb e e st ent e teeaeeseenseeeeeneas 246
11.28.34 IZAIMMA ..eeviiiieiieeiieciie ettt ettt ettt et e e st e e e ssaesseessaesteessaesssenseesseenseenns 246

80-N2040-13 Rev. D

17

Hexagon Profiler Tool User Guide Contents

T1.28.35 TIFINT oottt ettt e e et eeete e eaeeeeaeeeaeeeaeeeenseeeneeas 246
11.28.36 TIFOUNA......ccuveiiieiieeeeieeeee ettt e et ere e e eeeaaeeeneeenneas 247
L1.28.37 10 cuieiiieieeie ettt sttt sttt ettt e st e e st e et e e b e e teenbe e saenbeenseenneenns 247
T1.28.38 10ZT0 c.uiiieieiieiieeiie ettt ettt ettt ettt e beesbeesteesba e saenseenseenseenns 247
T1.28.39 0GP ettt ettt ettt ettt et ettt b et 247
T1.28.40 10Z2 oottt ettt ettt ettt et ettt e b e et e e e te e te e tb b e e teeareenns 247
TL.28.41 O@D ettt ettt ettt b et e e te ettt b e te e 248
T1.28.42 TEINT...uiiiiiiiiiie ettt ettt ettt et e et e e e e e eaaeeeseeeaaeeeaseeereeenreean 248
T1.28.43 TrOUNG....uoiiiiiiieiieeieeeeee ettt ettt e e et e et eeereeeeaseeaseeeaseeeaneas 248
T1.28.44 MOAL.......oi ittt e et an 248
11.28.45 NEATDYINTvviiviiiiiiiieitieeii ettt ettt ettt ettt b e vt e ebe e s teeebeeaeesbeebeease e 249
T1.28.460 NEXIATIET ..ottt e et e et et e e e 249
11.28.47 NEXTOWAL ...cvviieiviieeeie ettt et ettt et et ee et eeeaeeeeveeeareean 249
LL1.28.48 POW weeeviieeieeiieeieiiieetesite et et et e eteestee s e e seessaessaessaenseensaenseesseesseanseanseesseansennsennns 249
11.28.49 TeMAINACTeiiiiiiiiieciiiee et ettt e e e et e e e e e tae e e e ate e e e eaaeeeeeareeas 250
T1.28.50 TEIMQUO «.eeeeuiiiiieeiiiieeeiieee ettt e et e e ettt e et eesta e e e eteeeeesnteeesanssaeeansseeeanssneesansaeens 250
TL.28.51 TINE.uiiiiiiiieeeee et et e et e et e e eaeeeeaneeaeeeenseeenneas 250
T1.28.52 TOUNA ... oottt ettt ettt et e e eve e et e eeaseeeabeeeaneas 250
11.28.53 SCAIDIN ...ooeeiiiieie ettt ettt 250
T1.28.54 SCAIDNooieviiieie ettt 251
L1.28.55 SNt ettt ettt et enaeas 251
T1.28.56 SINN....oiiiiiiiiiiceie ettt e e eaee s 251
I AT« | A PSSO 251
T1.28.58 BAI 1ttt ettt et e ettt e e areeeanaas 251
T1.28.59 aNN c.oiiiiiiiieccee ettt aaa s 252
T11.28.60 £ZAMIMA ...eeuvviieeiiiieeiiiie ettt et e e et te et e e et e e e eebeeeeenbeeeensaeeennnseeennnseeesnnseeas 252
T1.28.61 LIUIIC oot et et e et e et e et e e eaeeeenneeaeeeenseeennens 252
T1.29 <HIME.NS Lottt ettt et e e e eaeeens 253
T1.29.1 @SCHIIMIC ...eeviiiiie ettt ettt ettt et et e et e e eaeeeeteeeereeeeaseeeaseeeasaeenrens 254
11.29.2 @SCLIMIE T..vviiuiieeieieieiiieniieeieieesteesteesteesseesseessaesseesseenseenseesseesseesseanseenseesseessesnsennns 254
11.29.3 CLOCK ...ttt e et n 254
11.29.4 CLOCKS PER SEC ...ttt ettt et ve v ne v 254
L1.29.5 CLOCK £ uiiiiieiieiieiiie ettt sttt ettt et esbeesbeeteenbeensaenseenseenseenns 254
T1.29.6 CLIMIC .ottt ettt e e e et e e e te e eateeeseeenseeeaseeesseenseean 255
L1.29.7 CLIMIC T uuviiieiiieieeiieeiesteeteieeseteeteestee s e e e e saeste e saenseenseesseasseessessseensensseassenssenens 255
T1.29.8 AIfTHIINIE o..eveeeeie ettt e e aee s 255
11.29.9 @MEIME ...uviiiiiiieiiie ettt ettt ettt et e et e b e e esteesabeeeteeentaeesseeessseensseessseensseas 255
11.29.10 ZIMUIME Turiivierieeiieiesieeeteettesteeteessteseesseessaesseeseesseesaesseassesssesssesnsessseassesssennns 255
11.29.11 1OCAITIME ..ttt ettt eve e et e e e eeaseeaae s 255
11.29.12 10CAIIME T uuviiiiiiieiiesiieeiieiierte et ste ettt et e e e steesbe e saenseesaenseenns 256
11.29.13 MKEINE ..ooiuviieiie ettt et e et e e eaeeeaaeeeeeeeaaeeeaeeeereeenneean 256
T1.29.14 NULL....ooiiiiiioee ettt e e e e e e e eae e eaee e ereeenneean 256
L1.29.15 SIZE tuiuiiiieeieiieiiieeiesite ettt et ettt et e st et et e e seenbeenseeseesseesseenseenseesseensesnsennns 256

80-N2040-13 Rev. D 18

Hexagon Profiler Tool User Guide Contents

11.29.16 SHTHIMEvieuiiieieeeieiee ettt ettt e e e aeeseenaeneene s 257
11.29.17 SHPLIME ..ottt ettt ettt ettt e e st e st et e esseeseeseenseeaeeseeneeeenens 260
T1.29.18 TIIMNIC .ottt ettt b et se st e e s be bt e eneene s 263
11.29.19 HIME tuiiiiiieieieeieeee ettt ettt et sb et te st et eeene s 263
T1.29.200 T 1ottt ettt ettt ettt et e sa e sttt e st e nt st e e eteeseenneeeneas 263
T1.30 SUCKAL N> ..ot ettt e et e e st e e sbe e estaesnnaeenaeeenees 264
T1.30.1 C32IE0MD ..ttt e sttt e ae st enaeeeeeneas 265
T1.30.2 ChATTO oottt et st 265
L1.30.3 ChAr32 oottt e 266
11.30.4 MDITOCTO ..ttt ettt e e eaeeteeneeneene s 266
T1.30.5 MDITOC32 ittt ettt se et esae st est e e eaeeseeneeneeneas 267
11.30.6 MDSEALE teoviiuiiieiiieieieie ettt ettt sttt e et e et st et e saeebeeneeneeneas 267
L1307 NULL oottt ettt ettt s tesbe e neene s 268
L1.30.8 SIZE fuiiiiiieiieiteieet ettt ettt ettt ettt a ettt st ettt e he et neeene e 268
11.30.9 STDC UTF 16 oottt st 268
11.30.10 STDC UTF 32 oottt 268
L1371 SUNISEA.ND Lottt ettt e ettt se et e s eneennens 269
LR 3 0 14 PP 270
T1.31.2 @ELCWA..uiiiiieeiiieieciie ettt st ettt ettt e e et e e e eaeesseesbeenseenseesneansenenennns 270
J I B R {1 10 o PSRRI 270
L1314 GEUPIA oottt ettt sttt ettt n st et e ae et nae e ene s 272
T1.31.5 GEEWA oottt ettt ettt ne e ennen 273
LR B O L 13 2O RRSRRPTRPR 273
L1317 SWAD ettt sttt ettt neeene s 273
L1.31.8 SYSCONT ..coiiiiieiieiiectieit ettt ettt et ettt e et et e b e e beesseesseenseenseenseenseenseenns 273
T1.31.9 UNINK ettt sttt sttt et esaebeeneeneeneens 276
T1.32 SWCRATS ..ottt et e et e e s ebaesnbeeeteeennes 277
L1.32.1 DEOWC ettt ettt ettt bttt et et sbeeneeneens 279
T1.32.2 fEELWC cvvietieiieeeeeiee ettt ettt ettt et ettt e bt enb e et esbeesseesteseseensaenseansennsennns 279
L1.32.3 fZOEWS.cuiiiieiie ettt ettt ettt et ettt e et e s e e b e et e asbeesteenbeenseenbeanbenaneenns 279
T1.32.4 fPULWC 1ottt ettt ettt sa ettt et et e et st et e s aeebeeneeneennens 280
T1.32.5 fPUEWS 1ottt ettt ettt ettt e b e st es e et e seebeeneeneennens 280
L1.32.0 FWIAC 1.ttt sttt 280
L1.32.7 FWPTINEE oottt ettt ettt ettt e e e nbeenseense e 280
T1.32.8 fWSCANT......iiiiiiieiieceeee ettt ettt ettt esbe e ste b e et sbeenseense e 280
L1.32.9 GOEWC cueiiitieieee ettt ettt ettt e s et se ettt nt et e sttt et e teteeneeneennens 281
T1.32.10 @OEWCRAT.......iiiiiiiiiiciiie ettt ettt ettt e et eete e e saeeesbeensseesesaensneas 281
LR I B 111 014 15 USRS 281
11.32.12 MDIEOWC c.eeeieieereeetee ettt sttt st sbe e seesne s 282
T1.32.13 MIDSINIE oottt ettt ettt sttt et et ene s 282
T1.32.14 MDSITOWECS ..vieviieiiieiiieeetteeteeeeieeeteeesteeetbe e teeessbeessseeesbeesssesesseeessseensseessseenssens 283
T1.32.15 MDSLALE Toriiiiieiiieiiieiie et eiie et ettt et st et e e esbeesabeeesseeenseeenseeeneseenseeas 283
T1.32.160 NULL ...ttt ettt ettt sttt ettt ene s 283
80-N2040-13 Rev. D 19

Hexagon Profiler Tool User Guide Contents

TT.32.T7 PULWC ettt ettt e ettt e ettt e ettt e e et e eeenteeeensseeensseeannsseeeensseeenn 284
T1.32.18 PUIWCRATL ...t ettt et e s e e e e e sbeeenseeesseenseeas 284
LR I S V7 PP 284
11.32.20 SWPTINEE...ooiiiiiiiiccieieee ettt ettt et e et e ste e b e e ssaesbeensaenseenns 284
T1.32.21 SWSCANT ..ot et e et e e tae e et e e e eaaaee s 284
T1.32.22 B0ttt ettt e et e et e et e e eteeeaaens 285
T1.32.23 UNEZEEWC ..vtitietietieeteeie ettt et eve et te ettt et e eteeebeesbeebeesbeesteesbeesseesseessesaseenns 285
11.32.24 VEWPTINEE ©.ciiiiieiecee ettt et essaeseee e 285
11.32.25 VEWSCANT......oiiiiiiiiece ettt 285
11.32.26 VSWPIINEEiiiiiiiiiiceiee ettt ettt ettt e e esbe e sbeeeseessbeeenseeessseenseeas 286
11.32.27 VSWSCANT ...ttt et e e e e e et e e et eeeeaaaeas 286
T1.32.28 VWPIINEE .ottt ettt e et s b e et e st eaa e teestseeaeenes 286
11.32.29 VWSCANTuiiiiiiiiiiiieee ettt ettt et 287
11.32.30 WCHAR MAX ..ottt sv et ns e esaenseenns 287
11.32.31 WCHAR MINooiiiiiiiiiiiecteeeee ettt ettt et et v e e eane e 287
T1.32.32 WEORAT T ouviiiiiiiiiiieiiieieece ettt ettt ettt et et r e et e eteeebeetaesbeessesase e 287
11.32.33 WEOITOMID ...ttt e ee e e e e e eaaeeereeeaeean 287
T1.32.34 WEOSCAL ..viieiiiiiieciiee ettt e et e ettt e et e et e e e e taeeeeateeeessaae e naseeesnnseeeeasseeens 288
11.32.35 WECSCRI c..viiiiiicceec ettt ettt 288
L1.32.360 WECSCITIP weeeeuviieiieeiiieiteeeitteeiteeeeteesteeesteeeteeansaeesnseesnseesnseesnseeenseesnsseansaeennseennnens 288
11.32.37 WECSCOIL ittt ettt e e e et e e e eaaaea s 289
L1.32.38 WESCPY tuveereiirieireeetieiteestteteeeteesreeteeeteesseeteebeesteeeseeseesseesseesteesseesssesseessesaseenns 289
L1.32.39 W CSCSPILuceutiieiieeiteeiieeette et e et esatteesteeetaeentteeesbeesnseeenteesnseesnseesnseeensneennseeneens 289
11.32.40 WECSTHIMC.uviiiuiiiiiiiieee ettt ettt ettt et e et e e e eareeeseeeaneas 289
T1.32.41 WESICI ..ttt et et eeta e e ereeeree s 289
T1.32.42 WCSIICAL ..ceeeiiiiieee ettt ettt e e e ettt e e e e e e e ettt a e e e e e e seasebaaeaeeeesanssreees 290
T1.32.43 WOSTICINIP 1eeueviieeiiieeeeiitee ettt te e et e e e bte e ettt e e bt e e e entaeeeeanseeesenssaesansaeeensseeennneeas 290
L1.32.44 WCSTICPY +eeeuvveerterenieienieeeatteantteeateesteeesteeesteansaeesnseesnseesnseesnseeeseesnseeansseennseenssens 290
L1.32.45 WESPDIK...ccuvieiieiiieiieie ettt ettt et s e st e st e s saestbesaesneenseennes 290
T1.32.46 WECSTCIT....cuviiiiiietie ettt ettt et e e e eaae e et e e eaveeeareean 291
11.32.47 WECSTEOIMDS ...ttt ettt e et e e et e e e et e e e e tae e e e taeeeeeaaeeeas 291
T1.32.48 WECSSPIN ceeeuiiiiieiiiiee ettt e et ee e e ite e e ettt e et e ettt e e eteeeeanseeeensseeennsseeennsseeesnsseeens 2901
T1.32.49 WWCSSIT ..vviieieeiieeeciiiee ettt ettt e et e e ettt e e et e e eate e e e ebaeeeeabeeeesssaeensseeeansseeeeasseeens 292
T1.32.50 WESTOQ . .uiiiiieeiieeeee et et ettt et e e e e e eareeeveeeree s 292
T1.32.51 WESTOT ..ottt ettt et as 292
T1.32.52 WESTOK ..ttt ettt e et e e e e e eaee s 293
T1.32.53 WEOSTOL . ittt ettt et enneas 293
11.32.54 WESTOIA ...civiiieiieee e e et an 294
T1.32.55 WESTOIL...uiiieiiiceeiceeee ettt ettt 294
T1.32.56 WECSTOUL...oouviiiiiieiie et ettt et e e et e eaee e eveeearee s 294
11.32.57 WESTOULL.....eviiiieieeee e et e e e an 295
11.32.58 WOSKITIN 1.ttt ettt e e e et eeeeaaaee s 295
11.32.59 WEOLOD ettt et ettt et as 295
80-N2040-13 Rev. D 20

Hexagon Profiler Tool User

Guide Contents

11.32.60 WEOF ..ottt ettt e e aeeseeneeeene s 295
T1.32.01 WALttt ettt sttt ettt sttt see et enaeseenne s 295
11.32.62 WIMCIMNCHTeiiiiiiiiiiiiii ettt ettt e e te e et e esbeeestbeeseseeessaensseas 296
11.32.63 WIMCINCINP ...viieiiiieeeiiiieeeeieeeeeiteeeeitteeeiteeeeasteeeaseeeeanseeesanssaesansseeesnsseeesasseeens 296
11.32.64 WINCITICPY .. vveeveeeiiieiieeeiieeiteeesteeetteesteeesaeesaeesnteesnseesnseesnseeenseesnsseansseesnseennsens 296
11.32.65 WIMEIIINOVE ...teiiiiieiiiieiiieite et ettt e sttt ettt st e e sbbe st esaeeenbbeesbaeesabeesabeens 296
11.32.60 WIMIEIMSELeiiuiiiiiiieniieiit ettt ettt et ettt et ettt et e b e ettt 296
L1.32.67 WPIINLE L..eiiiiiieiieceeeeee ettt ettt et este e be e e nseessaenseenns 297
11.32.68 WSCANT ..ottt ettt ettt et et st ent et e e aeeseenaeneene s 297
L1.33 SWOLYPC.NS ittt ettt et e et e e te b et eenseenseenreenns 298
T1.33.1 WEOF ettt sttt ettt en et e e aeeteenaeneenne s 299
11.33.2 ASWAIMUIM ..ottt ettt ettt et e bt eeee e e e eaeeneenseeseeneeneas 299
11.33.3 ASWAIPRAeiiieiieiicee et sttt st staesreenes 299
11.33.4 GSWDIANK ..ottt 300
L1.33.5 SWEIETL oottt ettt s ene s 300
11,3310 ISWOLYPIC -eenvitieiienieeteeieeiie ettt et ettt et e et e s et et e e e eseeseene e seseeseensenseeneeneenseaseeneeneas 300
T1.33.7 ASWAIZIE c.eeneieieiieie ettt et ettt et e et e st st etesaeeseenaeneenneas 300
T1.33.8 ISWEIAPN....eeiiiiieiieieeeeee et ettt ettt et et e et te et e e nte b e enseenne e 300
T1.33.9 ASWIOWET ...ttt ettt et sttt et e e e 300
T1.33. 10 ISWPTINE 1vreiiiiieiiieeiesiieeteeeseteeteestteeeessaestaestaessaesseessaesseesaesseesseesssenseenseenseenns 301
L1331 ISWPUIICE .eutieniieiiieniieie et eete et etesiaeestesetesnbessaessaeesaessaesseesssesssensaesssenseesssesseenses 301
T1.33.12 ISWSPACE ..c.utiieiieeiieeteeeieeetteeseteestteesteessbeeeeseeesseasssaeassseensseessseansseessssensseenssenns 301
L1.33. 13 ISWUPPCT .t eutieieeutietieie et et enteeeeesseesteesseenseesseesseesaessseassesssesnsesssesssessaesssenseennns 301
T1.33.14 ASWXATZIL cveeneeteetieiiee ettt ettt e ettt et esbe st eneeseese e st eneenees 301
L1.33.15 fOWCIIANS eeuvteeiiieiiteiiee ettt ettt ettt ettt ettt et e st e sate e st e sabeeeabeeenbeesabeean 302
11.33.160 LOWIOWET ..ceeiiiieieete ettt ettt 302
T1.33. 17 COWUPDET ceeteieeiieeeeeittee ettt te e et e e e tte e e st e ettt e e entateeeenseeeeennseeeeanseeeeenssaeannnsees 302
T1.33.18 WOLIANS ..ttt ettt ettt et et ettt e sae ettt et 302
T1.33.19 WOLIANS ereeuiiiieeiiiiieeiiiee et te et e e e tte ettt e ettt e e et eesenbeeeeensbeesensaeeensseesnnneeas 302
L1.33.200 WOty PO eitieuieieie ettt ettt ettt te ettt et se et e st e st e e e saesee et eneesseeneeseenseeseeseeneeeenneas 303
L1.33.21 WOEYPE teueiiieiieieiteeeee sttt ettt sttt st saesae s 303
T1.33.22 WANE f ittt ettt ettt ettt ea e e et e e esbe e st enteseeeesseeneeneeeneas 303
12 Copyright and license notices.........cccccociimmiiiiininise e 304
12.1 DINKUMWATE TIOTICEevteutetitieiietetteieeste st estete et sttt et ste et enteste bt et eneesbeenteneesteeneeneens 304
12.2 NEtBSD NOLICES ...ceutetietieiietiie ettt ettt ettt ettt sttt e e bttt et e b b eae e eeee e 308
80-N2040-13 Rev. D 21

Hexagon Profiler Tool User Guide Figures

Figures

Figure 4-1 ESCape SEqUENCES . . . o\ vttt ettt et et e et 12
Figure 5-1 Stream statesttt 20
Figure 6-1 Print format String Syntax.uittit e, 22
Figure 6-2 Print conversion specificationt .. 23
Figure 7-1 Scan conversion specificationsouuiiimrnrnnnnnnnnn.. 33
Figure 11-1 Character classification functions it .. 61
Figure 11-2 strtod pattern matching. e, 211
Figure 11-3 strtod hexadecimal string. i, 211
Figure 11-4 strtod decimal String.ttt 212
Figure 11-5 strtol pattern. e e 213
Figure 11-6 Time conversion functions.ottt enenann.. 253

80-N2040-13 Rev. D 22

Qualcomm Hexagon C Library User Guide Tables

Tables

Table 4-1 Visible characters in C characterset, 10
Table 4-2 Additional characters in C characterset 11
Table 4-3 MNEmoNic €SCAPE SEQUENCES . .+ « v v v vt vt et ettt e e et et e e ee e eeeen s 12
Table 4-4 Defined trigraphs 14
Table 6-1 Defined combinations and propertiescouurerenennn... 25
Table 7-1 Scan conversion specifiers. it 34
Table 11-1 fentl commandsttt e 68
Table 11-2 fentl flagso 69
Table 11-3 Commands for advisory record locking. 69
Table 11-4 fentlreturn values. 71
Table 11-5 a64l character to digit representationsouvueenennenen... 195
Table 11-6 164a character to digit representationsc.ovtenrenen... 202
Table 11-7 stat time-related fields, 230
Table 11-8 stat size-related fields. 230
Table 11-9 tms structure elementsttt 233
Table 11-10 strftime conversion specificationsotitinrenennan... 257
Table 11-11 strptime conversion specifications.o, 260
Table 11-12 sysconfvalues 274

80-N2040-13 Rev. D

1 Introduction

This document describes the Qualcomm® Hexagon™ C Library. It also provides the following
library-related information:

m How to use the library, including what happens at program startup and at program
termination

m How to write character constants and string literals, and how to convert between multibyte
characters and wide characters

m How to read and write data between the program and files
m How to generate text under control of a format string

m How to scan and parse text under control of a format string

As much as possible, this reference indicates any extensions to standard-conforming behavior
particular to this implementation.

1.1 Conventions

Courier font is used for computer text and code samples:
hexagon-profiler --packet analyze --elf=<files>.

The following notation is used to define command syntax:

m Square brackets enclose optional items, for example, [label].
m Bold indicates literal symbols for example, [comment].

m The vertical bar character, |, indicates a choice of items.

m Parentheses enclose a choice of items for example, (add|del).

m Anellipsis, . . ., follows items that can appear more than once.

1.2 Technical assistance

For assistance or clarification on information in this document, submit a case to Qualcomm
Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/.

If you do not have access to the CDMATech Support website, register for access or send email
to support.cdmatech@gqti.qualcomm.com.

80-N2040-13 Rev. D 2

Overview

2.1

C programs on the Hexagon processor can access the following C libraries:

m The Dinkum C99 library!
m Additional APIs to improve POSIX compliance

The functions defined in these libraries perform essential services such as input/output and
storage allocation. They also provide efficient implementations of frequently-used operations.
Numerous macro and type definitions accompany the functions to help you make better use of
the library.

Dinkum C99 library

The Dinkum C99 library implements the traditional Standard C library headers:

m <assert.h>— For enforcing assertions when functions execute

m <complex.h> — For performing complex arithmetic

m <ctype.h>— For classifying characters

m <errno.h> — For testing error codes reported by library functions

m <fenv.h> - For controlling IEEE-style floating point arithmetic

m <float.h>— For testing floating point type properties

m <inttypes.h>— For converting various integer types

m <iohw.h>[Added with TR18015/TR18037] — For writing portable I/O hardware drivers
in C

B <is0646.h> — For programming in ISO 646 variant character sets

m <limits.h> — For testing integer type properties

m <locale.h> — For adapting to different cultural conventions

m <math.h> - For computing common mathematical functions

m <setjmp.h> — For executing non-local goto statements

m <signal.h> — For controlling various exceptional conditions

m <stdarg.h>— For accessing a varying number of arguments

m <stdbool.h> - For defining a convenient Boolean type name and constants

1" An ISO-conforming implementation of the Standard C Library, as revised in 1999, corrected through
2003, and extended by several (non-normative) Technical Reports.

80-N2040-13 Rev. D

Qualcomm Hexagon C Library User Guide Overview

m <stddef.h>— For defining several useful types and macros

m <stdint.h>— For defining various integer types with size constraints
m <stdio.h>— For performing input and output

m <stdlib.h>— For performing a variety of operations

m <string.h>— For manipulating several kinds of strings

m <tgmath.h> — For declaring various type-generic math functions

m <time.h>— For converting between various time and date formats

m <uchar.h> [Added with TR19769] — For manipulating 16-bit and 32-bit UNICODE wide
characters

m <wchar.h> — For manipulating wide streams and several kinds of strings

m <wctype.h> — For classifying wide characters.

2.2 Posix APIs

The following APIs are provided with the C99 library for improved POSIX compliance:
m <search.h>— For manipulating search tables

m <strings.h>— For manipulating strings

m <sys/stat.h> — For file query operations

m <sys/time.h>— For defining the t imeval structure and gettimeofday function

m <sys/times.h>— For defining the tms structure and the t imes function prototype

m <unistd.h> — For defining standard symbolic constants and types

For more information on these libraries, including library declarations and definitions, see
Chapter 11.

80-N2040-13 Rev. D 4

Using the C library

3.1

All Standard C library entities are declared or defined in one or more standard headers. To
make use of a library entity in a program, write an include directive that names the relevant
standard header.

The full set of Standard C headers constitutes a hosted implementation: <assert.h>,
<complex.h>, <ctype.h>, <errno.h>, <fenv.h>, <float.h>, <inttypes.hs>,
<iso0646.h>, <limits.h>, <locale.h>, <math.h>, <setjmp.h>, <signal.hs>,
<stdarg.h>, <stdbool .h>, <stddef.h>, <stdint.h>, <stdio.h>, <stdlib.h>,
<string.h>, <tgmath.h>, <time.h>, <wchar.h>, and <wctype.h>.

The headers <iso646 .h>, <wchar.h>, and <wctype.h> are added with Amendment 1, an
addition to the C Standard published in 1995.

The headers <complex.h>, <fenv.h>, <inttypes.hs, <stdbool .h>, <stdint.hs>, and
<tgmath.h> are added with C99, a revision to the C Standard published in 1999.

A freestanding implementation of Standard C provides only a subset of these standard headers:
<float.h>, <is0646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, and
<stdint.h>. Each freestanding implementation defines:

m How it starts the program
m What happens when the program terminates

m What library functions (if any) it provides

Using standard C headers

You include the contents of a standard header by naming it in an include directive, as in:

#include <stdio.h> /* include I/0 facilities */

You can include the standard headers in any order, a standard header more than once, or two or
more standard headers that define the same macro or the same type. Do not include a standard
header within a declaration. Do not define macros that have the same names as keywords
before you include a standard header.

A standard header never includes another standard header. A standard header declares or
defines only the entities described for it in this document.

80-N2040-13 Rev. D

Qualcomm Hexagon C Library User Guide Using the C library

Every function in the library is declared in a standard header. The standard header can also
provide a masking macro, with the same name as the function, that masks the function
declaration and achieves the same effect. The macro typically expands to an expression that
executes faster than a call to the function of the same name. The macro can, however, cause
confusion when you are tracing or debugging the program. So you can use a standard header in
two ways to declare or define a library function. To take advantage of any macro version,
include the standard header so that each apparent call to the function can be replaced by a
macro expansion.

For example:

#include <ctype.h>
char *skip space(char *p)

{

while (isspace(*p)) // can be a macro
++p;

return (p);

}

To ensure that the program calls the actual library function, include the standard header and
remove any macro definition with an undef directive.

For example:

#include <ctype.h>

#undef isspace remove any macro definition
int f£(char *p) {
while (isspace(*p)) must be a function
++D;

You can use many functions in the library without including a standard header (although this

practice is no longer permitted in C99 and is generally not recommended). If you do not need
defined macros or types to declare and call the function, you can simply declare the function as
it appears in this chapter. Again, you have two choices. You can declare the function explicitly.

For example:

double sin(double x) ; declared in <math.h>
y = rho * sin(theta);

Or you can declare the function implicitly if it is a function returning int with a fixed number
of arguments, as in:

n = atoi(str); declared in <stdlib.h>

If the function has a varying number of arguments, such as print£, you must declare it
explicitly: Either include the standard header that declares it or write an explicit declaration.

You cannot define a macro or type definition without including its standard header because
each of these typically varies among implementations.

80-N2040-13 Rev. D 6

Qualcomm Hexagon C Library User Guide Using the C library

3.2 C library conventions

A library macro that masks a function declaration expands to an expression that evaluates each
of its arguments once (and only once). Arguments that have side effects evaluate the same way
whether the expression executes the macro expansion or calls the function. Macros for the
functions getc and putc are explicit exceptions to this rule. Their st ream arguments can be
evaluated more than once. Avoid argument expressions that have side effects with these
macros.

A library function that alters a value stored in memory assumes that the function accesses no
other objects that overlap the object whose stored value it alters. You cannot depend on
consistent behavior from a library function that accesses and alters the same storage via
different arguments. The function memmove is an explicit exception to this rule. Its arguments
can point at objects that overlap.

An implementation has a set of reserved names that it can use for its own purposes. All the
library names described in this document are, of course, reserved for the library. Do not define
macros with the same names. Do not try to supply your own definition of a library function,
unless this document explicitly says you can (only in C++). An unauthorized replacement may
be successful on some implementations and not on others. Names that begin with two
underscores (or contain two successive underscores, in C++), such as __ sSTDIO, and names
that begin with an underscore followed by an upper case letter, such as _Entry, can be used as
macro names, whether or not a translation unit explicitly includes any standard headers.
Names that begin with an underscore can be defined with external linkage. Avoid writing such
names in a program that you wish to keep maximally portable.

Some library functions operate on C strings, or pointers to NULL-terminated strings. You
designate a C string that can be altered by an argument expression that has type pointer to char
(or type array of char, which converts to pointer to char in an argument expression). You
designate a C string that cannot be altered by an argument expression that has type pointer to
const char (or type const array of char). In any case, the value of the expression is the address
of the first byte in an array object. The first successive element of the array that has a NULL
character stored in it marks the end of the C string.

m A filename is a string whose contents meet the requirements of the target environment for
naming files.

m A multibyte string is composed of zero or more multibyte characters, followed by a NULL
character.

m A wide-character string is composed of zero or more wide characters (stored in an array of
wchar t), followed by a NULL wide character.

If an argument to a library function has a pointer type, the value of the argument expression
must be a valid address for an object of its type. This is true even if the library function has no
need to access an object by using the pointer argument. An explicit exception is when the
description of the library function spells out what happens when you use a NULL pointer.
Some examples are:

strcpy(sl, 0) is INVALID
memcpy (sl, 0, 0) is UNSAFE
realloc (0, 50) is the same as malloc (50)

80-N2040-13 Rev. D 7

Qualcomm Hexagon C Library User Guide Using the C library

3.3

Program startup and termination

The target environment controls the execution of the program (in contrast to the translator part
of the implementation, which prepares the parts of the program for execution). The target
environment passes control to the program at program startup by calling the main function
that you define as part of the program. Program arguments are C strings that the target
environment provides, such as text from the command line that you type to invoke the
program. If the program does not need to access program arguments, you can define main as:

extern int main(void)
{ <body of main> }

If the program uses program arguments, you define main as:

extern int main (int argc, char **argv)
{ <body of mains> }

You can omit either or both of extern int because these are the default storage class and
type for a function definition. For program arguments:

m argc is a value (always greater than zero) that specifies the number of program
arguments.

m argv[0] designates the first element of an array of C strings.

m argvlargc] designates the last element of the array, whose stored value is a NULL
pointer.

For example, if you invoke a program by entering the following:
echo hello
A target environment can call main with:
m The value 2 for argc
m The address of an array object containing "echo" stored in argv [0]
m The address of an array object containing "hello" stored in argv [1]

m A NULL pointer stored in argv [2]

argv [0] is the name used to invoke the program. The target environment can replace this
name with a NULL string("). The program can alter the values stored in argc, in argv, and
in the array objects whose addresses are stored in argv.

Before the target environment calls main, it stores the initial values you specify in all objects
that have static duration. It also opens three standard streams, controlled by the text-stream
objects designated by the macros:

m stdin — For standard input
m stdout — For standard output

m stderr — For standard error output

80-N2040-13 Rev. D 8

Qualcomm Hexagon C Library User Guide Using the C library

If main returns to its caller, the target environment calls exit with the value returned from
main as the status argument to exit. If the return statement that the program executes has no
expression, the status argument is undefined. This is the case if the program executes the
implied return statement at the end of the function definition.

You can also call exit directly from any expression within the program. In both cases, exit
calls all functions registered with atexit in reverse order of registry and then begins program
termination. At program termination, the target environment closes all open files, removes any
temporary files that you created by calling tmpfile, and then returns control to the invoker,
using the status argument value to determine the termination status to report for the program.

The program can terminate abnormally by calling abort, for example. Each implementation
defines whether it closes files, whether it removes temporary files, and what termination status
it reports when a program terminates abnormally.

80-N2040-13 Rev. D 9

Characters

4.1

Characters play a central role in Standard C. You represent a C program as one or more source
files. The translator reads a source file as a text stream consisting of characters that you can
read when you display the stream on a terminal screen or produce hard copy with a printer.
You often manipulate text when a C program executes. The program might produce a text
stream that people can read, or it might read a text stream entered by someone typing at a
keyboard or from a file modified using a text editor.

This document describes the characters that you use to write C source files and that you
manipulate as streams when executing C programs.

Character sets

When you write a program, you express C source files as text lines containing characters from
the source character set. When a program executes in the target environment, it uses characters
from the target character set. These character sets are related, but need not have the same
encoding or all the same members.

Every character set contains a distinct code value for each character in the basic C character
set. A character set can also contain additional characters with other code values. For example:

m The character constant 'x' becomes the value of the code for the character corresponding
to x in the target character set.

m The string literal "xyz" becomes a sequence of character constants stored in successive
bytes of memory, followed by a byte containing the value zero:

{IXII lyll 'z, I\Ol}

A string literal is one way to specify a NULL-terminated string, an array of zero or more bytes
followed by a byte containing the value zero.

Table 4-1 Visible characters in C character set

Form Members

letter ABCDEFGHTIUJKLM

NOPQRSTUVWIXYZ

abcdefghijklm

nopgrstuvwzxyz

digit 01234567829

underscore

80-N2040-13 Rev. D 10

Qualcomm Hexagon C Library User Guide Characters

Table 4-1 Visible characters in C character set

Form Members

punctuation L s e () s, -/

Table 4-2 Additional characters in C character set

Form Members
space Leave blank space
BEL Signal an alert (BELI)
BS Go back one position (BackSpace)
FF Go to top of page (FormFeed)
NL Go to start of next line (NewLine)
CR Go to start of this line (Carriage Return)
HT Go to next Horizontal Tab stop
VT Go to next Vertical Tab stop

The code value zero is reserved for the NULL character that is always in the target character
set. Code values for the basic C character set are positive when stored in an object of type
char. Code values for the digits are contiguous, with increasing value. For example, '0' + 5
equals '5'. Code values for any two letters are not necessarily contiguous.

411 Character sets and locales

An implementation can support multiple locales, each with a different character set. A locale
summarizes conventions particular to a given culture, such as how to format dates or how to
sort names. To change locales and, therefore, target character sets while the program is
running, use the function setlocale. The translator encodes character constants and string
literals for the "cn locale, which is the locale in effect at program startup.

80-N2040-13 Rev. D 11

Qualcomm Hexagon C Library User Guide Characters

4.2 Escape sequences

Within character constants and string literals, you can write a variety of escape sequences.
Each escape sequence determines the code value for a single character. Use escape sequences
to represent character codes:

m That you cannot otherwise write (such as \n)
m That can be difficult to read properly (such as \t)
m That might change value in different target character sets (such as \a)

m That must not change in value among different target environments (such as \0)

Figure 4-1 shows the syntax for an escape sequence.

escapes
seguence

»

Figure 4-1 Escape sequences

Mnemonic escape sequences help you remember the characters they represent.

Table 4-3 Mnemonic escape sequences

Character Escape Sequence

wy

N

? \?
\ \\
BEL \a
BS \b
FF \f
NL \n
CR \r
HT \t
VT \v

80-N2040-13 Rev. D 12

Qualcomm Hexagon C Library User Guide Characters

4.21 Numeric escape sequences

You can also write numeric escape sequences using either octal or hexadecimal digits. An
octal escape sequence takes one of the forms: \d or \dd or \ddd.

The escape sequence yields a code value that is the numeric value of the 1-, 2-, or 3-digit octal
number following the backslash (\). Each d can be any digit in the range 0 to 7. A
hexadecimal escape sequence takes one of the forms: \xh or \xhh or

The escape sequence yields a code value that is the numeric value of the arbitrary-length
hexadecimal number following the backslash (\). Each h can be any decimal digit 0 to 9, or
any of the letters a to f or A to F. The letters represent the digit values 10 tol5, where either a
or A has the value 10.

A numeric escape sequence terminates with the first character that does not fit the digit
pattern. For example:

m You can write the NULL character as '\o0'.

m You can write a newline character (NL) within a string literal by writing:
"hi\n"
Which becomes the array:
{*hr, 'i', "\n', 0}

m You can write a string literal that begins with a specific numeric value:
"\3abc"
Which becomes the array:
{3, *a', 'b', 'c', 0}

m You can write a string literal that contains the hexadecimal escape sequence \xF followed
by the digit 3 by writing two string literals:

n \XF non3mn
Which becomes the array:

0xF, '3', 0
{ }

80-N2040-13 Rev. D 13

Qualcomm Hexagon C Library User Guide

Characters

4.3 Trigraphs

A trigraph is a sequence of three characters that begins with two question marks (??). You use
trigraphs to write C source files with a character set that does not contain convenient graphic
representations for some punctuation characters. (The resultant C source file is not necessarily

more readable, but it is unambiguous.)

Table 4-4 Defined trigraphs

Character Trigraph
[22 (
\ ??/
] 2?)
» 272!
{ ?2?2<
| 221
} 22>
- 27~
27=

These are the only trigraphs. The translator does not alter any other sequence that begins with

two question marks.

For example, the expression statements:

printf ("Case ??=3 is done??/n");
printf ("You said what????/n");

are equivalent to:

printf ("Case #3 is done\n");
printf ("You said what??\n") ;

The translator replaces each trigraph with its equivalent single character representation in an
early phase of translation. You can always treat a trigraph as a single source character.

80-N2040-13 Rev. D

Qualcomm Hexagon C Library User Guide Characters

4.4 Multibyte characters

A source character set or target character set can also contain multibyte characters (sequences
of one or more bytes). Each sequence represents a single character in the extended character
set. You use multibyte characters to represent large sets of characters, such as Kanji. A
multibyte character can be a one-byte sequence that is a character from the basic C character
set, an additional one-byte sequence that is implementation defined, or an additional sequence
of two or more bytes that is implementation defined.

Any multibyte encoding that contains sequences of two or more bytes depends, for its
interpretation between bytes, on a conversion state determined by bytes earlier in the sequence
of characters. In the initial conversion state if the byte immediately following matches one of
the characters in the basic C character set, the byte must represent that character.

For example, the EUC encoding is a superset of ASCII. A byte value in the interval

[0xA1, OxFE] is the first of a two-byte sequence (whose second byte value is in the interval
[0x80, 0xFF]). All other byte values are one-byte sequences. Because all members of the basic
C character set have byte values in the range [0x00, 0x7F] in ASCII, EUC meets the
requirements for a multibyte encoding in Standard C. Such a sequence is not in the initial
conversion state immediately after a byte value in the interval [0xA1, OxFe]. It is ill-formed if
a second byte value is not in the interval [0x80, OxFF].

Multibyte characters can also have a state-dependent encoding. How you interpret a byte in
such an encoding depends on a conversion state that involves both a parse state, as before, and
a shift state, determined by bytes earlier in the sequence of characters. The initial shift state, at
the beginning of a new multibyte character, is also the initial conversion state. A subsequent
shift sequence can determine an alternate shift state, after which all byte sequences (including
one-byte sequences) can have a different interpretation. A byte containing the value zero,
however, always represents the NULL character. It cannot occur as any of the bytes of another
multibyte character.

For example, the JIS encoding is another superset of ASCIL. In the initial shift state, each byte
represents a single character, except for two three-byte shift sequences:

m The three-byte sequence "\x1B$B" shifts to two-byte mode. Subsequently, two successive
bytes (both with values in the range [0x21, 0x7E]) constitute a single multibyte character.

m The three-byte sequence "\x1B (B" shifts back to the initial shift state.

JIS also meets the requirements for a multibyte encoding in Standard C. Such a sequence is not
in the initial conversion state when partway through a three-byte shift sequence or when in
two-byte mode.

(Amendment 1 adds the type mbstate t, which describes an object that can store a
conversion state. It also relaxes the above rules for generalized multibyte characters, which
describe the encoding rules for a broad range of wide streams.)

You can write multibyte characters in C source text as part of a comment, a character constant,
a string literal, or a filename in an include directive. How such characters print is
implementation defined. Each sequence of multibyte characters that you write must begin and
end in the initial shift state. The program can also include multibyte characters in NULL-
terminated C strings used by several library functions, including the format strings for printf
and scanf. Each such character string must begin and end in the initial shift state.

80-N2040-13 Rev. D 15

Qualcomm Hexagon C Library User Guide Characters

441 Wide-character encoding

Each character in the extended character set also has an integer representation, called a wide-
character encoding. Each extended character has a unique wide-character value. The value
zero always corresponds to the NULL wide character. The type definition wchar t specifies
the integer type that represents wide characters.

Write a wide-character constant as L 'mbc', where mbc represents a single multibyte character.
Write a wide-character string literal asL"mbs", where mbs represents a sequence of zero or
more multibyte characters. The wide-character string literal L"xyz" becomes a sequence of
wide-character constants stored in successive bytes of memory, followed by a NULL wide
character:

{lel , L'y', L'z', LI\OI}
The following library functions help you convert between the multibyte and wide-character

representations of extended characters: btowc, mblen, mbrlen, mbrtowc, mbsrtowcs,
mbstowcs, mbtowc, wertomb, wesrtombs, westombs, wetob, and wet omb.

The macro MB_LEN MAX specifies the length of the longest possible multibyte sequence
required to represent a single character defined by the implementation across supported
locales. And the macro MB_CUR MAX specifies the length of the longest possible multibyte
sequence required to represent a single character defined for the current locale.
For example, the string literal "hello" becomes an array of six char:

{Ihl, e, lll, Ill, o', 0}
While the wide-character string literal L"hello" becomes an array of six integers of type

wchar t:

{L'h', L'e', L'1', L'1', L'o', 0}

80-N2040-13 Rev. D 16

5 Files and streams

A program communicates with the target environment by reading and writing files (ordered
sequences of bytes). A file can be, for example, a data set that you can read and write
repeatedly (such as a disk file), a stream of bytes generated by a program (such as a pipeline),
or a stream of bytes received from or sent to a peripheral device (such as the keyboard or
display). The latter two are interactive files. Files are typically the principal means by which to
interact with a program.

You manipulate all these kinds of files in much the same way—by calling library functions.
You include the standard header <stdio.h> to declare most of these functions.

Before you can perform many of the operations on a file, the file must be opened. Opening a
file associates it with a stream, a data structure within the Standard C library that glosses over
many differences among files of various kinds. The library maintains the state of each stream
in an object of type FILE.

The target environment opens three files prior to program startup. You can open a file by
calling the library function fopen with two arguments. The first argument is a filename, a
multibyte string that the target environment uses to identify which file you want to read or
write. The second argument is a C string that specifies:

m Whether you intend to read data from the file or write data to it or both

m Whether you intend to generate new contents for the file (or create a file if it did not
previously exist) or leave the existing contents in place

m Whether writes to a file can alter existing contents or should only append bytes at the end
of the file

m Whether you want to manipulate a text stream or a binary stream

Once the file is successfully opened, you can then determine whether the stream is byte
oriented (a byte stream) or wide oriented (a wide stream). Wide-oriented streams are supported
only with Amendment 1. A stream is initially unbound. Calling certain functions to operate on
the stream makes it byte oriented, while certain other functions make it wide oriented. Once
established, a stream maintains its orientation until it is closed by a call to fclose or freopen.

80-N2040-13 Rev. D 17

Qualcomm Hexagon C Library User Guide Files and streams

5.1 Text and binary streams

A text stream consists of one or more lines of text that can be written to a text-oriented display
so that they can be read. When reading from a text stream, the program reads an NL (newline)
at the end of each line. When writing to a text stream, the program writes an NL to signal the
end of a line. To match differing conventions among target environments for representing text
in files, the library functions can alter the number and representations of characters transmitted
between the program and a text stream.

Thus, positioning within a text stream is limited. You can obtain the current file-position
indicator by calling fgetpos or ftell. You can position a text stream at a position obtained
this way, or at the beginning or end of the stream, by calling £setpos or £seek. Any other
change of position might well be not supported.

For maximum portability, the program should not write:
m Empty files

m Space characters at the end of a line

m Partial lines (by omitting the NL at the end of a file)

m Characters other than the printable characters, NL, and HT (horizontal tab)

If you follow these rules, the sequence of characters you read from a text stream (either as byte
or multibyte characters) will match the sequence of characters you wrote to the text stream
when you created the file. Otherwise, the library functions can remove a file you create if the
file is empty when you close it. Or they can alter or delete characters you write to the file.

A binary stream consists of one or more bytes of arbitrary information. You can write the
value stored in an arbitrary object to a (byte-oriented) binary stream and read exactly what was
stored in the object when you wrote it. The library functions do not alter the bytes you transmit
between the program and a binary stream. They can, however, append an arbitrary number of
NULL bytes to the file that you write with a binary stream. The program must deal with these
additional NULL bytes at the end of any binary stream.

Thus, positioning within a binary stream is well defined, except for positioning relative to the
end of the stream. You can obtain and alter the current file-position indicator the same as for a
text stream. Moreover, the offsets used by £tell and £seek count bytes from the beginning of
the stream (which is byte zero), so integer arithmetic on these offsets yields predictable results.

80-N2040-13 Rev. D 18

Qualcomm Hexagon C Library User Guide Files and streams

5.2 Byte and wide streams

A byte stream treats a file as a sequence of bytes. Within the program, the stream looks like the
same sequence of bytes, except for the possible alterations described above.

By contrast, a wide stream treats a file as a sequence of generalized multibyte characters,
which can have a broad range of encoding rules. (Text and binary files are still read and
written as described above.) Within the program, the stream looks like the corresponding
sequence of wide characters. Conversions between the two representations occur within the
Standard C library. The conversion rules can, in principle, be altered by a call to setlocale
that alters the category Lc_cTyYPE. Each wide stream determines its conversion rules at the
time it becomes wide oriented, and retains these rules even if the category LC_CTYPE
subsequently changes.

Positioning within a wide stream suffers the same limitations as for text streams. Moreover,
the file-position indicator may well have to deal with a state-dependent encoding. Typically, it
includes both a byte offset within the stream and an object of type mbstate t. Thus, the only
reliable way to obtain a file position within a wide stream is by callingfgetpos, and the
only reliable way to restore a position obtained this way is by calling fsetpos.

5.3 Controlling streams

fopen returns the address of an object of type FILE. You use this address as the stream
argument to several library functions to perform various operations on an open file. For a byte
stream, all input takes place as if each character is read by calling £getc, and all output takes
place as if each character is written by calling fputc. For a wide stream (with Amendment 1),
all input takes place as if each character is read by calling £getwc, and all output takes place as
if each character is written by calling fputwc.

You can close a file by calling £close, after which the address of the FILE object is invalid.

A FILE object stores the state of a stream, including:
m An error indicator — Set nonzero by a function that encounters a read or write error

m An end-of-file indicator — Set nonzero by a function that encounters the end of the file
while reading

m A file-position indicator — Specifies the next byte in the stream to read or write, if the file
can support positioning requests

m A stream state — Specifies whether the stream will accept reads and/or writes and, with
Amendment 1, whether the stream is unbound, byte oriented, or wide oriented

m A conversion state — Remembers the state of any partly assembled or generated
generalized multibyte character, as well as any shift state for the sequence of bytes in the
file)

m A file buffer — Specifies the address and size of an array object that library functions can
use to improve the performance of read and write operations to the stream

80-N2040-13 Rev. D 19

Qualcomm Hexagon C Library User Guide Files and streams

Do not alter any value stored in a FILE object or in a file buffer that you specify for use with
that object. You cannot copy a FILE object and portably use the address of the copy as a
stream argument to a library function.

5.4 Stream states

Figure 5-1 shows the valid stream states and state transitions.

OFEN

UNEOUND

WER

WIDE
OCRIENTED
FEEADING
WW
at EOQF

FW—1 fwide(=, -1) P position FW+1 fwide (=, +1)
ER byte read WR wide read
EW byte write W wide write

Figure 5-1 Stream states

Each of the circles denotes a stable state. Each of the lines denotes a transition that can occur
as the result of a function call that operates on the stream. Five groups of functions can cause
state transitions.

Functions in the first three groups are declared in <stdio.h>:

m The byte read functions — fgetc, fgets, fread, fscanf, getc, getchar, gets, scanf,
ungetc, vEscanf (added with C99), and vscanf (added with C99)

m The byte write functions — fprintf, fputc, fputs, fwrite, printf, putc, putchar,
puts, viprintf, and vprintf

m The position functions — ff1ush, fseek, fsetpos, and rewind

80-N2040-13 Rev. D 20

Qualcomm Hexagon C Library User Guide Files and streams

Functions in the remaining two groups are declared in <wchar.h>:

m The wide read functions — fgetwc, fgetws, fwscanf, getwe, getwchar, ungetwe,
wscanf, vfwscanf (added with C99), and vwscanf (added with C99)

m The wide write functions — fwprintf, fputwe, fputws, putwe, putwchar, viwprintf,
vwprintf, and wprintf,

For the stream s, the call fwide (s, 0) is always valid and never causes a change of state.
Any other call to £fwide, or to any of the five groups of functions described above, causes the
state transition shown in the state diagram. If no such transition is shown, the function call is
invalid.

The state diagram shows how to establish the orientation of a stream:

m Thecall fwide(s, -1), orto abyte read or byte write function, establishes the stream as
byte oriented.

m Thecall fwide(s, 1), orto a wide read or wide write function, establishes the stream as
wide oriented.

The state diagram shows that you must call one of the position functions between most write
and read operations:

m You cannot call a read function if the last operation on the stream was a write.

m You cannot call a write function if the last operation on the stream was a read, unless that
read operation set the end-of-file indicator.

Finally, the state diagram shows that a position operation never decreases the number of valid
function calls that can follow.

80-N2040-13 Rev. D 21

Formatted output

6.1

Several library functions help you convert data values from encoded internal representations
to text sequences that are generally readable by people. You provide a format string as the
value of the format argument to each of these functions, hence the term formatted output. The
functions fall into two categories.

The byte print functions (declared in <stdio.h>) convert internal representations to
sequences of type char, and help you compose such sequences for display: fprintf, printf,
sprintf, vfprintf, vprintf, and vsprint£. For these function, a format string is a
multibyte string that begins and ends in the initial shift state.

The wide print functions (declared in <wchar.h> and hence added with Amendment 1)
convert internal representations to sequences of type wchar t, and help you compose such
sequences for display: fwprintf, swprintf, wprintf, vfwprintf, vswprintf, and
vwprintf. For these functions, a format string is a wide-character string. In the descriptions
that follow, a wide character wc from a format string or a stream is compared to a specific
(byte) character c as if by evaluating the expression wctob (wc) == c.

Print formats

A format string has the same syntax for both the print functions and the scan functions, as
shown in Figure 6-1.

format

% conversion
. specification
. string
any multibyte
){ character eaxcept
white space % null

Figure 6-1 Print format string syntax

A format string consists of zero or more conversion specifications interspersed with literal text
and white space. White space is a sequence of one or more characters ¢ for which the call
isspace (c) returns nonzero. (The characters defined as white space can change when you
change the Lc_cTYPE locale category.) For the print functions, a conversion specification is
one of the print conversion specifications described below.

80-N2040-13 Rev. D 22

Qualcomm Hexagon C Library User Guide Formatted output

6.2

A print function scans the format string once from beginning to end to determine what
conversions to perform. Every print function accepts a varying number of arguments, either
directly or under control of an argument of type va_1list. Some print conversion
specifications in the format string use the next argument in the list. A print function uses each
successive argument no more than once. Trailing arguments can be left unused.

In the description that follows:
m Integer conversions are the conversion specifiers that end in d, i, o, u, x, or X

m Floating point conversions are the conversion specifiers that end in e, E, £, F, g, or G

Print functions

For the print functions, literal text or white space in a format string generates characters that
match the characters in the format string. A print conversion specification typically generates
characters by converting the next argument value to a corresponding text sequence. Figure 6-2
shows the syntax for a print conversion specification.

H print
)

specification

L
F

S

0Lt

Figure 6-2 Print conversion specification

Boldface Italic indicates a feature added after C99. Support for fixed-point conversions is
added with the C Technical Report TR18037. These closely match the extensions for the
Freescale Signal Processing Engine Auxiliary Processing Unit. This implementation also
includes, as a conforming extension, conversions for the vectors supported by the Freescale
AltiVec architecture.

Following the percent character (%) in the format string, you can write an optional position,
which consists of a nonzero decimal integer followed by a dollar sign ($). If present, an
argument position with value N indicates that at least N arguments to the print function follow,
all having the type required for the conversion specifier. Argument number N, counting from 1,
is the one converted; no arguments are skipped over. If no argument position is present, the
next argument to the print function has the type required for the conversion specifier. It is
converted and then skipped over. (This implementation supports argument positions as a
conforming extension.)

Following any argument position, you can write zero or more format flags:
m - to left-justify a conversion

m + to generate a plus sign for signed values that are positive

80-N2040-13 Rev. D 23

Qualcomm Hexagon C Library User Guide Formatted output

m space to generate a space for signed values that have neither a plus nor a minus sign

m # to prefix 0 on an o conversion, to prefix 0x on an x conversion, to prefix 0X on an X
conversion, or to generate a decimal point and fraction digits that are otherwise suppressed
on a floating point conversion

m 0 to pad a conversion with leading zeros after any sign or prefix, in the absence of a minus
(-) format flag or a specified precision

For AltiVec vector conversions, you can intersperse format flags with an optional separator,
the characters comma, semicolon, equal sign, or underscore. The conversion occurs for each
of the elements of the vector, and generates a separator between each pair of elements. If you
specify no separator, the default is:

m For the c conversion specifier, no character.

m For all other conversion specifications, a space character.

Following any format flags, you can write a field width that specifies the minimum number of
characters to generate for the conversion. Unless altered by a format flag, the default behavior
is to pad a short conversion on the left with space characters. If you write an asterisk (*)
instead of a decimal number for a field width, a print function takes the value of the next
argument (which must be of type int) as the field width. If the argument value is negative, it
supplies a - format flag and its magnitude is the field width.

Following any field width, you can write a dot (.) followed by a precision that specifies one of
the following:

m The minimum number of digits to generate on an integer conversion
m The number of fraction digits to generate on an e, E, or £ conversion
m The maximum number of significant digits to generate on a g or G conversion

m The maximum number of characters to generate from a C string on an s conversion

If you write an * instead of a decimal number for a precision, a print function takes the value
of the next argument (which must be of type int) as the precision. If the argument value is
negative, the default precision applies. If you do not write either an * or a decimal number
following the dot, the precision is zero.

80-N2040-13 Rev. D 24

Qualcomm Hexagon C Library User Guide Formatted output

6.3

Print conversion specifiers

Following any precision, you must write a one-character print conversion specifier, possibly
preceded by a one- or two-character qualifier. Each combination determines the type required
of the next argument (if any) and how the library functions alter the argument value before
converting it to a text sequence. The integer and floating point conversions also determine
what base to use for the text representation. If a conversion specifier requires a precision p and
you do not provide one in the format, the conversion specifier chooses a default value for the
precision.

In the descriptions that follow, array declarations for arguments are not to be taken literally. A
declaration of the form:

short x[8]

Is shorthand for:

struct {short x[8]; }

And a cast of the form:

(short x[8])x

Is shorthand for:

* (struct {short x[8]; } *)&x

Table 6-1 lists all defined combinations and their properties.

Table 6-1 Defined combinations and properties
anve_rs_ion Argument Type Converted Value Default Precision Notes
pecifier Base
%a double x (double)x 10 6 Added with C99
$La long double x (long double)x 10 6 Added with C99
SA double x (double)x 10 6 Added with C99
SLA long double x (long double)x 10 6 Added with C99
5c int x (unsigned char)x
3lc wint_t x (wchar_t)x
sve char x[16] (char [16])x AltiVec
%d int x (int)x 10 1
shd int x (short)x 10 1
$1d long x (long)x 10 1
$hhd int x (signed char)x 10 1 Added with C99
$jd intmax_t x (intmax_t)x 10 1 Added with C99
%114 long long x (long long)x 10 1 Added with C99
std ptrdiff_t x (ptrdiff_t)x 10 1 Added with C99
$zd size_tx (ptrdiff_t)x 10 1 Added with C99
svd char x[16] (signed char [16])x AltiVec

80-N2040-13 Rev. D 25

Qualcomm Hexagon C Library User Guide

Formatted output

Table 6-1 Defined combinations and properties
°°""e.’§‘°" Argument Type Converted Value Default Precision Notes
Specifier Base
shvd short x[8] (short [8])x AltiVec
svhd short x[8] (short [8])x AltiVec
$1vd int x[4] (int [4])x AltiVec
svld int x[4] (int [4])x AltiVec
se double x (double)x 10 6
$Le long double x (long double)x 10 6
sve float x[4] (float [4])x 10 6 AltiVec
SE double x (double)x 10 6
$LE long double x (long double)x 10 6
$VE float x[4] (float [4])x 10 6 AltiVec
$f double x (double)x 10 6
SLE long double x (long double)x 10 6
svE float x[4] (float [4])x 10 6 AltiVec
SF double x (double)x 10 6 Added with C99
$LF long double x (long double)x 10 6 Added with C99
$VF float x[4] (float [4])x 10 6 AltiVec
%9 double x (double)x 10 6
$Lg long double x (long double)x 10 6
svg float x[4] (float [4])x 10 6 AltiVec
%G double x (double)x 10 6
SLG long double x (long double)x 10 6
$vG float x[4] (float [4])x 10 6 AltiVec
%1 int x (int)x 10 1
shi int x (short)x 10 1
$1i long x (long)x 10 1
$hhi int x (signed char)x 10 1 Added with C99
%51 intmax_t x (intmax_t)x 10 1 Added with C99
$111 long long x (long long)x 10 1 Added with C99
sti ptrdiff_t x (ptrdiff_t)x 10 1 Added with C99
$zi size_t x (ptrdiff_t)x 10 1 Added with C99
svi char x[16] (signed char [16])x AltiVec
shvi short x[8] (short [8])x AltiVec
svhi short x[8] (short [8])x AltiVec
$1lvi int x[4] (int [4])x AltiVec
$vli int x[4] (int [4])x AltiVec

80-N2040-13 Rev. D

26

Qualcomm Hexagon C Library User Guide Formatted output
Table 6-1 Defined combinations and properties
°°""e.r§‘°" Argument Type Converted Value Default Precision Notes
Specifier Base
sk accum X (accum)x 10 6 Added with TR18037
Shk short accum x (short accum)x 10 6 Added with TR18037
%1k long accum x (long accum)x 10 6 Added with TR18037
%K unsigned accum x (unsigned accum)x 10 6 Added with TR18037
$hK unsigned short accum x | (unsigned short accum)x 10 6 Added with TR18037
$1K unsigned long accum x | (unsigned long accum)x 10 6 Added with TR18037
sn int *x
$hn short *x
%1n long *x
$hhn int *x Added with C99
%jn intmax_t *x Added with C99
$11n long long *x Added with C99
$tn ptrdiff_t *x Added with C99
%zn size_t *x Added with C99
%0 int x (unsigned int)x 8 1
$ho int x (unsigned short)x 8 1
$lo long x (unsigned long)x 8 1
$hho int x (unsigned char)x 8 1 Added with C99
$jo intmax_t x (uintmax_t)x 8 1 Added with C99
51lo long long x (unsigned long long)x 8 1 Added with C99
sto ptrdiff_t x (size_t)x 8 1 Added with C99
$z0 size_tx (size_t)x 8 1 Added with C99
$vo char x[16] (unsigned char [16])x AltiVec
$hvo short x[8] (unsigned short [8])x AltiVec
svho short x[8] (unsigned short [8])x AltiVec
$1vo int x[4] (unsigned int [4])x AltiVec
svlo int x[4] (unsigned int [4])x AltiVec
%p void *x (void *)x
s fract x (fract)x 10 6 Added with TR18037
shr short fract x (short fract)x 10 6 Added with TR18037
$1lr long fract x (long fract)x 10 6 Added with TR18037
SR unsigned fract x (unsigned fract)x 10 6 Added with TR18037
ShR unsigned short fract x (unsigned short fract)x 10 6 Added with TR18037
$1R unsigned long fract x (unsigned long fract)x 10 6 Added with TR18037
3s const char *x (const char *)x large

80-N2040-13 Rev. D

Qualcomm Hexagon C Library User Guide

Formatted output

Table 6-1 Defined combinations and properties
°°""e.r§‘°" Argument Type Converted Value Default Precision Notes
Specifier Base

51s const wchar_t *x (const wchar_t *)x large

su int x (unsigned int)x 10 1
$hu int x (unsigned short)x 10 1
$1lu long x (unsigned long)x 10 1
$hhu int x (unsigned char)x 10 1 Added with C99
%ju intmax_t x (uintmax_t)x 10 1 Added with C99
$11lu long long x (unsigned long long)x 10 1 Added with C99
stu ptrdiff_t x (size_t)x 10 1 Added with C99
$zu size_tx (size_t)x 10 1 Added with C99
$vu char x[16] (unsigned char [16])x AltiVec
$hvu short x[8] (unsigned short [8])x AltiVec
svhu short x[8] (unsigned short [8])x AltiVec
$1vu int x[4] (unsigned int [4])x AltiVec
svlu int x[4] (unsigned int [4])x AltiVec

$x int x (unsigned int)x 16 1
$hx int x (unsigned short)x 16 1
$1x long x (unsigned long)x 16 1
$hhx int x (unsigned char)x 16 1 Added with C99
%jx intmax_t x (uintmax_t)x 16 1 Added with C99
511x long long x (unsigned long long)x 16 1 Added with C99
$tx ptrdiff_t x (size_t)x 16 1 Added with C99
$zX size_tx (size_t)x 16 1 Added with C99
VX char x[16] (unsigned char [16])x AltiVec
shvx short x[8] (unsigned short [8])x AltiVec
svhx short x[8] (unsigned short [8])x AltiVec
$1vx int x[4] (unsigned int [4])x AltiVec
svlx int x[4] (unsigned int [4])x AltiVec

%X int x (unsigned int)x 16 1
$hx int x (unsigned short)x 16 1
$1X long x (unsigned long)x 16 1
$hhx int x (unsigned char)x 16 1 Added with C99
33X intmax_t x (uintmax_t)x 16 1 Added with C99
$11x long long x (unsigned long long)x 16 1 Added with C99
$tX ptrdiff_t x (size_t)x 16 1 Added with C99
$zX size_tx (size_t)x 16 1 Added with C99

80-N2040-13 Rev. D

28

Qualcomm Hexagon C Library User Guide Formatted output

Table 6-1 Defined combinations and properties
Conve_rs_ion Argument Type Converted Value Default Precision Notes
Specifier Base
VX char x[16] (unsigned char [16])x AltiVec
shvx short x[8] (unsigned short [8])x AltiVec
$vhX short x[8] (unsigned short [8])x AltiVec
31vX int x[4] (unsigned int [4])x AltiVec
Sv1x int x[4] (unsigned int [4])x AltiVec
%% none (char)'% '

The print conversion specifier determines any behavior not summarized in this table. For all
floating point conversions:

m Positive infinity prints as inf or INF.
m Negative infinity prints as -inf or - INF.

m Not-a-number (NaN) prints as nan or NAN.

The upper-case version prints only for an upper-case conversion specifier, such as $E but not
$Lg.

In the following descriptions, p is the precision. Examples follow each of the print conversion
specifiers. A single conversion can generate up to 509 characters.

Write $a or %A to generate a signed hexadecimal fractional representation with a decimal
power-of-two exponent. The generated text takes the form +0xh.hhhP+dd, where:

m < is either a plus or minus sign, X is either x (for ¥a conversion) or x (for $A conversion)
m his a hexadecimal digit

m disadecimal digit

m The hexadecimal point (.) is the decimal point for the current locale

m P is either p (for $a conversion) or P (for $A conversion)

The generated text has one integer digit which is zero only for the value zero, a hexadecimal
point if any fraction digits are present or if you specify the # format flag, at most p fraction
digits with no trailing zeros, and at least one exponent digit with no leading zeros. The result is
rounded. The value zero has a zero exponent.

printf ("%a", 30.0) generates, e.g. Oxfp+l
printf ("$.2A", 30.0) generates, e.g. 0XF.00P+1

Write %c to generate a single character from the converted value.

printf ("%c", 'a') generates a
printf ("<%3c|%-3c¢c>", 'a', 'b') generates < alb >

For a wide stream, conversion of the character x occurs as if by calling btowc (x) .

wprintf (L"%c", 'a') generates btowc (a)

80-N2040-13 Rev. D 29

Qualcomm Hexagon C Library User Guide Formatted output

Write $1c to generate a single character from the converted value. Conversion of the character
x occurs as if it is followed by a NULL character in an array of two elements of type wchar t
converted by the conversion specification 1s.

printf ("$lc", L'a') generates a
wprintf (L"1lc", L'a') generates L'a'

Write %4, %1, %o, %u, $x, Or $X to generate a possibly signed integer representation. $d or %i
specifies signed decimal representation, $o unsigned octal, $u unsigned decimal, $x unsigned
hexadecimal using the digits 0-9 and a- £, and $x unsigned hexadecimal using the digits 0 to 9
and A to F. The conversion generates at least p digits to represent the converted value. If p is
zero, a converted value of zero generates no digits.

printf ("$d %o %x", 31, 31, 31) generates 31 37 1f

printf ("$hu", Oxffff) generates 65535
printf ("$#X %$+d", 31, 31) generates OX1F +31

Write $e or $E to generate a signed decimal fractional representation with a decimal power-of-
ten exponent. The generated text takes the form +d.dddE+dd, where + is either a plus or minus
sign, d is a decimal digit, the decimal point (.) is the decimal point for the current locale, and
E is either e (for e conversion) or E (for $E conversion). The generated text has one integer
digit, a decimal point if p is nonzero or if you specify the #format flag, p fraction digits, and
at least two exponent digits. The result is rounded. The value zero has a zero exponent.

printf ("%$e", 31.4) generates 3.140000e+01
printf ("$.2E", 31.4) generates 3.14E+01

Write $£ %F, %k, %K, %r, or %R to generate a signed decimal fractional representation with no
exponent. The generated text takes the form +d.ddd, where + is either a plus or minus sign, d
is a decimal digit, and the decimal point (.) is the decimal point for the current locale. The
generated text has at least one integer digit, a decimal point if p is nonzero or if you specify the
format flag, and p fraction digits. The result is rounded.

printf ("sf", 31.4) generates 31.400000
printf ("%.0f %$#.0f", 31.0, 31.0)generates 31 31.

Write $g or %G to generate a signed decimal fractional representation with or without a decimal
power-of-ten exponent, as appropriate. For $g conversion, the generated text takes the same
form as either $e or $f conversion. For $G conversion, it takes the same form as either $E or
sF conversion. The precision p specifies the number of significant digits generated. (If p is
zero, it is changed to 1.) If ¥e conversion would yield an exponent in the range [-4, p), $f
conversion occurs instead. The generated text has no trailing zeros in any fraction and has a
decimal point only if there are nonzero fraction digits, unless you specify the # format flag.

printf ("%.6g", 31.4) generates 31.4
printf ("%.1g", 31.4) generates 3.14e+01

Write %n to store the number of characters generated (up to this point in the format) in an
integer object whose address is the value of the next successive argument.

printf ("abc%n", &x) stores 3

80-N2040-13 Rev. D 30

Qualcomm Hexagon C Library User Guide Formatted output

Write $p to generate an external representation of a pointer to void. The conversion is
implementation defined.

printf ("%p", (void *)&x) generates, e.g. F4CO

Write %s to generate a sequence of characters from the values stored in the argument C string.

printf ("%$s", "hello") generates hello
printf ("$.2s", "hello") generates he

For a wide stream, conversion occurs as if by repeatedly calling mbrtowc, beginning in the
initial conversion state. The conversion generates no more than p characters, up to but not
including the terminating NULL character.

wprintf (L"%$s", "hello") generates hello

Write $1s to generate a sequence of characters from the values stored in the argument wide-
character string. For a byte stream, conversion occurs as if by repeatedly calling wertomb,
beginning in the initial conversion state, so long as complete multibyte characters can be
generated. The conversion generates no more than p characters, up to but not including the
terminating NULL character.

printf ("%$1ls", L"hello") generates hello
wprintf (L"%.2s", L"hello") generates he

Write %% to generate the percent character (%).

[)

printf ("$%") generates %

80-N2040-13 Rev. D 31

Formatted input

7.1

Several library functions help you convert data values from text sequences that are generally
readable by people to encoded internal representations. You provide a format string as the
value of the format argument to each of these functions, hence the term formatted input. The
functions fall into two categories:

m The byte scan functions (declared in <stdio.h>) convert sequences of type char to
internal representations, and help you scan such sequences that you read: £scanf, scanf,
sscanf, vEscanf, vscanf, and vsscanf. For these function, a format string is a
multibyte string that begins and ends in the initial shift state.

m The wide scan functions (declared in <wchar.h> and hence added with Amendment 1)
convert sequences of type wchar t, to internal representations, and help you scan such
sequences that you read: fwscanf, wscanf, swscanf (added with C99), vEfwscanf (added
with C99), vwscanf, and vswscanf (added with C99). For these functions, a format string
is a wide-character string. In the descriptions that follow, a wide character wc from a
format string or a stream is compared to a specific (byte) character c as if by evaluating
the expression wctob (wec) == c.

Scan formats

A format string has the same general syntax for the scan functions as for the print functions:
zero or more conversion specifications, interspersed with literal text and white space. For the
scan functions, however, a conversion specification is one of the scan conversion
specifications described below.

A scan function scans the format string once from beginning to end to determine what
conversions to perform. Every scan function accepts a varying number of arguments, either
directly or under control of an argument of type va_1ist. Some scan conversion
specifications in the format string use the next argument in the list. A scan function uses each
successive argument no more than once. Trailing arguments can be left unused.

In the description that follows, the integer conversions and floating point conversions are the
same as for the print functions.

80-N2040-13 Rev. D 32

Qualcomm Hexagon C Library User Guide Formatted input

7.2 Scan functions

For the scan functions, literal text in a format string must match the next characters to scan in
the input text. White space in a format string must match the longest possible sequence of the
next zero or more white-space characters in the input. Except for the scan conversion specifier
sn (which consumes no input), each scan conversion specification determines a pattern that

one or more of the next characters in the input must match. And except for the scan conversion
specifiers c, n, and [, every match begins by skipping any white space characters in the input.

A scan function returns when:
m It reaches the terminating NULL in the format string
m It cannot obtain additional input characters to scan (input failure)

m A conversion fails (matching failure)

A scan function returns EOF if an input failure occurs before any conversion. Otherwise it
returns the number of converted values stored. If one or more characters form a valid prefix
but the conversion fails, the valid prefix is consumed before the scan function returns. Thus:

gscanf ("%i", &i) consumes 0X from field 0XZ
gscanf ("$f", &f) consumes 3.2E from field 3.2EZ

A scan conversion specification typically converts the matched input characters to a
corresponding encoded value. The next argument value must be the address of an object. The
conversion converts the encoded representation (as necessary) and stores its value in the
object. A scan conversion specification has the format shown in Figure 7-1.

scan
h 1 L c £fnau conversion
hh 11 d g o x specification
] t = e G p X
vh vl E 1 = %
Pl n—1o hv 1v a b F
E K r K

glaa PP Loy

Figure 7-1 Scan conversion specifications

Boldface Italic indicates a feature added after C99. Support for fixed-point conversions is
added with the C Technical Report TR18037. These closely match the extensions for the
Freescale Signal Processing Engine Auxiliary Processing Unit. This implementation also
includes, as a conforming extension, conversions for the vectors supported by the Freescale
AltiVec architecture.

Following the percent character (%) in the format string, you can write an asterisk (*) to
indicate that the conversion should not store the converted value in an object.

80-N2040-13 Rev. D 33

Qualcomm Hexagon C Library User Guide Formatted input

For AltiVec vector conversions, you can either precede or follow an asterisk with an optional
separator, the characters comma, semicolon, equal sign, or underscore. The conversion occurs
for each of the elements of the vector, and matches a separator sequence between each pair of
elements. If you specify a separator, the separator sequence is optional white space ending
with the separator. If you specify no separator, the default separator sequence is:

m For the c conversion specifier, nothing.

m For all other conversion specifications, optional white space ending with a space.

Following any * or separator, you can write a nonzero field width that specifies the maximum
number of input characters to match for the conversion (not counting any white space that the
pattern can first skip).

7.3 Scan conversion specifiers

Following any field width, you must write a one-character scan conversion specifier, either a
one-character code or a scan set, possibly preceded by a one- or two-character qualifier. Each
combination determines the type required of the next argument (if any) and how the scan
functions interpret the text sequence and converts it to an encoded value. The integer and
floating point conversions also determine what base to assume for the text representation. (The
base is the base argument to the functions strtol and strtoul.)

Table 7-1 lists the scan conversion specifiers and their properties.

Table 7-1 Scan conversion specifiers

Cg::;ﬁlorn Argument Type Clt:):r\:strisoizn Base Notes
%a float *x strtof 10 Added with C99
$la double *x strtod 10 Added with C99
$La long double *x strtold 10 Added with C99
%A float *x strtof 10 Added with C99
$1A double *x strtod 10 Added with C99
SLA long double *x strtold 10 Added with C99
$c char x[]
slc wchar_t x[]
$ve char (*x) [16] AltiVec
%d int *x strtol 10
$hd short *x strtol 10
$1d long *x strtol 10

$hhd int *x strtol 10 Added with C99
%jd intmax_t *x strtoimax 10 Added with C99
$11d long long *x strtoll 10 Added with C99
std ptrdiff t *x strtoimax 10 Added with C99
$zd size t *x strtoimax 10 Added with C99

80-N2040-13 Rev. D 34

Qualcomm Hexagon C Library User Guide

Formatted input

Table 7-1 Scan conversion specifiers
Conve_rs_ion Argument Type Conver_s ion Base Notes
Specifier Function

svd char (*x) [16] strtol 10 AltiVec

$hvd short (*x) [8] strtol 10 AltiVec

$vhd short (*x) [8] strtol 10 AltiVec

$1vd int (*x) [4]) strtol 10 AltiVec

$vld int (*x) [4]) strtol 10 AltiVec

Se float *x strtof 10 Changed with C99
sle double *x strtod 10

$Le long double *x strtold 10 Changed with C99
sve float (*x) [4] strtof 10 AltiVec

$E float *x strtof 10 Changed with C99
$1E double *x strtod 10

SLE long double *x strtold 10 Changed with C99
$VE float (*x) [4] strtof 10 AltiVec

sf float *x strtof 10 Changed with C99
$1f double *x strtod 10

$LE long double *x strtold 10 Changed with C99
$vE float (*x) [4] strtof 10 AltiVec

SF float *x strtof 10 Added with C99
$1F double *x strtod 10 Added with C99
SLF long double *x strtold 10 Added with C99
$VF float (*x) [4] strtof 10 AltiVec

%g float *x strtof 10 Changed with C99
$1lg double *x strtod 10

$Lg long double *x strtold 10 Changed with C99
Svg float (*x) [4] strtof 10 AltiVec

%G float *x strtof 10 Changed with C99
%1G double *x strtod 10

$LG long double *x strtold 10 Changed with C99
$VG float (*x) [4] strtof 10 AltiVec

$i int *x strtol 0

$hi short *x strtol 0

$1i long *x strtol 0
$hhi int *x strtol 0 Added with C99
$ji intmax_t *x strtoimax 0 Added with C99
5111 long long *x strtoll 0 Added with C99

80-N2040-13 Rev. D

35

Qualcomm Hexagon C Library User Guide

Formatted input

Table 7-1 Scan conversion specifiers
Conve_rs_ion Argument Type Conver_s ion Base Notes
Specifier Function

sti ptrdiff t *x strtoimax 0 Added with C99
$zi size t *x strtoimax 0 Added with C99
svi char (*x) [16] strtol 0 AltiVec
$hvi short (*x) [8] strtol 0 AltiVec
$vhi short (*x) [8] strtol 0 AltiVec
$1lvi int (*x) [4]) strtol 0 AltiVec
$vli int (*x) [4]) strtol 0 AltiVec
sn int *x
%hn short *x
$1ln long *x
$hhn int *x Added with C99
$jn intmax_t *x Added with C99
$1ln long long *x Added with C99
$tn ptrdiff t *x Added with C99
$zn size t *x Added with C99
%0 unsigned int *x strtoul 8
$ho unsigned short *x strtoul 8
$1lo unsigned long *x strtoul 8
$hho unsigned int *x strtoul 8 Added with C99
%jo uintmax_t *x strtoumax 8 Added with C99
$1lo unsigned long long *x strtoull 8 Added with C99
$to ptrdiff t *x strtoumax 8 Added with C99
%$zo size t *x strtoumax 8 Added with C99
$vo unsigned char (*x) [16] strtol 8 AltiVec
shvo unsigned short (*x) [8] strtol 8 AltiVec
$vho unsigned short (*x) [8] strtol 8 AltiVec
$1vo unsigned int (*x) [4]) strtol 8 AltiVec
svlo unsigned int (*x) [4]) strtol 8 AltiVec
$p void **x
%s char x[]
%1ls wchar t x[]
$u unsigned int *x strtoul 10
$hu unsigned short *x strtoul 10
s1lu unsigned long *x strtoul 10
$hhu unsigned int *x strtoul 10 Added with C99

80-N2040-13 Rev. D

36

Qualcomm Hexagon C Library User Guide

Formatted input

Table 7-1 Scan conversion specifiers

C(s):::;l;si;orn Argument Type cg::i:iﬂzn Base Notes
$ju uintmax_t *x strtoumax 10 Added with C99
$1lu unsigned long long *x strtoull 10 Added with C99
stu ptrdiff t *x strtoumax 10 Added with C99
$zu size t *x strtoumax 10 Added with C99
Svu unsigned char (*x) [16] strtol 10 AltiVec
shvu unsigned short (*x) [8] strtol 10 AltiVec
svhu unsigned short (*x) [8] strtol 10 AltiVec
$1lvu unsigned int (*x) [4]) strtol 10 AltiVec
sviu unsigned int (*x) [4]) strtol 10 AltiVec
$x unsigned int *x strtoul 16
$hx unsigned short *x strtoul 16
$1x unsigned long *x strtoul 16
$hhx unsigned int *x strtoul 16 Added with C99
$ix uintmax_t *x strtoumax 16 Added with C99
$11x unsigned long long *x strtoull 16 Added with C99
$tx ptrdiff t *x strtoumax 16 Added with C99
$zX size_t *x strtoumax 16 Added with C99
SV unsigned char (*x) [16] strtol 16 AltiVec
shvx unsigned short (*x) [8] strtol 16 AltiVec
$vhx unsigned short (*x) [8] strtol 16 AltiVec
$1lvx unsigned int (*x) [4]) strtol 16 AltiVec
svlx unsigned int (*x) [4]) strtol 16 AltiVec
$X unsigned int *x strtoul 16
$hx unsigned short *x strtoul 16
$1X unsigned long *x strtoul 16
$hhX unsigned int *x strtoul 16 Added with C99
$3iX uintmax_t *x strtoumax 16 Added with C99
311X unsigned long long *x strtoull 16 Added with C99
$tX ptrdiff t *x strtoumax 16 Added with C99
$zX size t *x strtoumax 16 Added with C99
$vX unsigned char (*x) [16] strtol 16 AltiVec
$hvxX unsigned short (*x) [8] strtol 16 AltiVec
$vhX unsigned short (*x) [8] strtol 16 AltiVec
$1vx unsigned int (*x) [4]) strtol 16 AltiVec
sv1X unsigned int (*x) [4]) strtol 16 AltiVec

80-N2040-13 Rev. D

37

Qualcomm Hexagon C Library User Guide Formatted input

Table 7-1 Scan conversion specifiers

Cometoion | Argument Type Conversion [g, . Notes
$[...1] char x[]
$10...] wchar_t x[]
%% none

The scan conversion specifier (or scan set) determines any behavior not summarized in this
table. In the following descriptions, examples follow each of the scan conversion specifiers. In
each example, the function sscanf matches the bold characters.

Write $c to store the matched input characters in an array object. If you specify no field width
w, then w has the value of 1. The match does not skip leading white space. Any sequence of w
characters matches the conversion pattern.

sscanf ("129E-2", "%c", &c) stores '1l'
sscanf ("129E-2", "%2c¢", &c[0]) stores '1', '2'

For a wide stream, conversion occurs as if by repeatedly calling wcrtomb, beginning in the
initial conversion state.

swscanf (L"129E-2", L"%c", &c) stores '1'

Write $1c to store the matched input characters in an array object, with elements of type
wchar_t. If you specify no field width w, then w has the value of 1. The match does not skip
leading white space. Any sequence of w characters matches the conversion pattern. For a byte
stream, conversion occurs as if by repeatedly calling mbrtowc, beginning in the initial
conversion state.

sscanf ("129E-2", "%lc", &c) stores L'1l'
sscanf ("129E-2", "%21lc", &c) stores L'1l', L'2'
swscanf (L"129E-2", L"%$1lc", &c) stores L'1l'

Write %4, %1, %0, %u, $x, or $X to convert the matched input characters as a signed integer and
store the result in an integer object.

sscanf ("129E-2", "%o%d%x", &i, &j, &k) stores 10, 9, 14
Write %a, %A, %e, $E, $f, 3F, %g, or %G to convert the matched input characters as a signed
fraction, with an optional exponent, and store the result in a floating point object.

sscanf ("129E-2", "%e", &f) stores 1.29
Write $n to store the number of characters matched (up to this point in the format) in an

integer object. The match does not skip leading white space and does not match any input
characters.

sscanf ("129E-2", "12%n", &i) stores 2

80-N2040-13 Rev. D 38

Qualcomm Hexagon C Library User Guide Formatted input

Write $p to convert the matched input characters as an external representation of a pointer to
void and store the result in an object of type pointer to void. The input characters must match
the form generated by the %p print conversion specification.

sscanf ("129E-2", "%p", &p) stores, e.g. 0x129E

Write %s to store the matched input characters in an array object, followed by a terminating
NULL character. If you do not specify a field width w, then w has a large value. Any sequence
of up to w non-white space characters matches the conversion pattern.

sgcanf ("129E-2", "%s", &s[0]) stores "129E-2"

For a wide stream, conversion occurs as if by repeatedly calling wcrtomb beginning in the
initial conversion state.

swscanf (L"129E-2", L"%s", &s[0]) stores "129E-2"

Write $1s to store the matched input characters in an array object, with elements of type
wchar_t, followed by a terminating NULL wide character. If you do not specify a field width
w, then w has a large value. Any sequence of up to w non-white space characters matches the
conversion pattern. For a byte stream, conversion occurs as if by repeatedly calling mbrtowc,
beginning in the initial conversion state.

sscanf ("129E-2", "%1ls", &s[0]) stores L"129E-2"
swscanf (L"129E-2", L"%1ls", &s[0]) stores L"129E-2"

Write % [to store the matched input characters in an array object, followed by a terminating
NULL character. If you do not specify a field width w, then w has a large value. The match does
not skip leading white space. A sequence of up to w characters matches the conversion pattern
in the scan set that follows. To complete the scan set, you follow the left bracket ([) in the
conversion specification with a sequence of zero or more match characters, terminated by a
right bracket (1).

If you do not write a caret (*) immediately after the [, then each input character must match
one of the match characters. Otherwise, each input character must not match any of the match
characters, which begin with the character following the *. If you write a] immediately after
the [or [*, then the] is the first match character, not the terminating .

If you write a minus (-) as other than the first or last match character, an implementation can
give it special meaning. It usually indicates a range of characters, in conjunction with the
characters immediately preceding or following, as in 0 to 9 for all the digits.) You cannot
specify a NULL match character.

sscanf ("129E-2", "%[54321]", &s[0]) stores "12"

For a wide stream, conversion occurs as if by repeatedly calling wcrtomb, beginning in the
initial conversion state.

swscanf (L"129E-2", L"%[54321]", &s[0]) stores "12"

80-N2040-13 Rev. D 39

Qualcomm Hexagon C Library User Guide Formatted input

Write $1 [to store the matched input characters in an array object, with elements of type
wchar_t, followed by a terminating NULL wide character. If you do not specify a field width
w, then w has a large value. The match does not skip leading white space. A sequence of up to
two characters matches the conversion pattern in the scan set that follows.

For a byte stream, conversion occurs as if by repeatedly calling mbrtowc, beginning in the
initial conversion state.

sscanf ("129E-2", "%1[54321]", &s[0]) stores L"12"
swscanf (L"129E-2", L"%1([54321]", &s[0]) stores L"12"

Write $% to match the percent character (%). The function does not store a value.

sscanf ("% O0XA", "%$% %i", &i) stores 10

80-N2040-13 Rev. D 40

8 Functions

Write functions to specify all the actions that a program performs when it executes. The type
of a function tells you the type of result it returns (if any). It can also tell you the types of any
arguments that the function expects when you call it from within an expression.

This chapter briefly describes just those aspects of functions that are most relevant to the use
of the Standard C library.

8.1 Argument promotion

Argument promotion occurs when the type of the function fails to provide any information
about an argument. Promotion occurs if the function declaration is not a function prototype or
if the argument is one of the unnamed arguments in a varying number of arguments. In this
instance, the argument must be an rvalue expression. Hence:

m An integer argument type is promoted.
m An lvalue of type array of Ty becomes an rvalue of type pointer to Tj.

m A function designator of type function returning Ty becomes an rvalue of type pointer to
function returning Ty.

m An argument of type £loat is converted to double.

8.2 Expressions

In a test-context expression the value of an expression causes control to flow one way within
the statement if the computed value is nonzero or another way if the computed value is zero.

You can write only an expression that has a scalar rvalue result, because only scalars can be
compared with zero.

An expression that occurs in a side effects context specifies no value and designates no object
or function. Hence, it can have type void. You typically evaluate such an expression for its
side effects—any change in the state of the program that occurs when evaluating an
expression. Side effects occur when the program stores a value in an object, accesses a value
from an object of volatile qualified type, or alters the state of a file.

80-N2040-13 Rev. D 41

Qualcomm Hexagon C Library User Guide Functions

8.3

Statements

do statement

A do statement executes a statement one or more times, while its test -context expression
has a nonzero value:

do
statement
while (test);

expression statement

An expression statement evaluates an expression in a side effects context:

printf ("hello\n") ; call a function
y =m* x + b; store a value
++count; alter a stored value

while statement
A while statement executes a statement zero or more times, while the test-context
expression has a nonzero value:

while (test)
statement

for statement

A for statement executes a statement zero or more times, while the optional test-context
expression test has a nonzero value. You can also write two expressions, se-1 and se-2, in a
for statement that are each in a side-effects context:

for (se-1; test; se-2)
statement

if statement

An if statement executes a statement only if the test -context expression has a nonzero
value:

if (test)
statement

if-else statement

An if-else statement executes one of two statements, depending on whether the test-context
expression has a nonzero value:

if (test)
statement-1
else
statement-2

80-N2040-13 Rev. D 42

Qualcomm Hexagon C Library User Guide Functions

return statement

A return statement terminates execution of the function and transfers control to the
expression that called the function. If you write the optional rvalue expression within the
return statement, the result must be assignment-compatible with the type returned by the
function. The program converts the value of the expression to the type returned and returns it
as the value of the function call:

return expression;

switch statement

A switch statement jumps to a place within a controlled statement, depending on the value of
an integer expression:

switch (expr)

{
case val-1:
stat-1;
break;
case val-2:
stat-2; falls through to next
default:
stat-n
}

80-N2040-13 Rev. D 43

Expressions

9.1

Write expressions to determine values, to alter values stored in objects, and to call functions
that perform input and output. In fact, you express all computations in the program by writing
expressions. The translator must evaluate some of the expressions you write to determine
properties of the program. The translator or the target environment must evaluate other
expressions prior to program startup to determine the initial values stored in objects with static
duration. The program evaluates the remaining expressions when it executes.

This chapter describes briefly just those aspect of expressions most relevant to the use of the
Standard C library.

Expression types

address constant expression

An address constant expression specifies a value that has a pointer type and that the translator
or target environment can determine prior to program startup.

constant expression

A constant expression specifies a value that the translator or target environment can determine
prior to program startup.

integer constant expression

An integer constant expression specifies a value that has an integer type and that the translator
can determine at the point in the program where you write the expression. (You cannot write a
function call, assigning operator, or comma operator except as part of the operand of a sizeof
operator.) In addition, you must write only subexpressions that have integer type. You can,
however, write a floating point constant expression as the operand of an integer type cast
operator.

floating point constant expression

A floating point constant expression specifies a value that has a floating point type and that the
translator can determine at the point in the program where you write the expression. (You
cannot write a function call, assigning operator, or comma operator except as part of the
operand of a sizeof operator.) In addition, you must write only subexpressions that have
integer or floating point type.

80-N2040-13 Rev. D 44

Qualcomm Hexagon C Library User Guide Expressions

9.2

Ivalue expression

An 1value expression designates an object that has an object type other than an array type.
Hence, you can access the value stored in the object. A modifiable 1value expression
designates an object that has an object type other than an array type or a const type. Hence,
you can alter the value stored in the object. You can also designate objects with an 1value
expression that has an array type or an incomplete type, but you can only take the address of
such an expression.

rvalue expression

An rvalue expression is an expression whose value can be determined only when the
program executes. The term also applies to expressions which need not be determined until
program execution.

sizeof expression

Use the sizeof operator, as in the expression sizeof X to determine the size in bytes of an
object whose type is the type of x. The translator uses the expression you write for X only to
determine a type; it is not evaluated.

void expression

A void expression has type void.

Promoting

Promoting occurs for an expression whose integer type is not one of the computational' types.
Except when it is the operand of the sizeof operator, an integer rvalue expression has one of
four types: int, unsigned int, long, or unsigned long.

When you write an expression in an rvalue context and the expression has an integer type
that is not one of these types, the translator promotes its type to one of these. If all the values
representable in the original type are also representable as type int, the promoted type is int.
Otherwise, the promoted type is unsigned int.

Thus, for signed char, short, and any signed bitfield type, the promoted type is int. For
each of the remaining integer types (char, unsigned char, unsigned short, any plain
bitfield type, or any unsigned bitfield type), the effect of these rules is to favor
promoting to int wherever possible, but to promote to unsigned int if necessary to preserve
the original value in all possible cases.

80-N2040-13 Rev. D 45

10

Preprocessing

10.1

10.2

The translator processes each source file in a series of phases. Preprocessing constitutes the
earliest phases, which produce a translation unit. Preprocessing treats a source file as a
sequence of text lines. You can specify directives and macros that insert, delete, and alter
source text.

This chapter describes briefly just those aspects of preprocessing most relevant to the use of
the Standard C library.

Macros

The macro FILE expands to a string literal that gives the remembered filename of the
current source file. You can alter the value of this macro by writing a 1ine directive.

The macro LINE expands to a decimal integer constant that gives the remembered line
number within the current source file. You can alter the value of this macro by writing a 1ine
directive.

Directives
The name func _ (added with C99) is effectively declared at the beginning of each
function body as:

static const char _ func_ [] = "func name";

Where func_name is the name of the function.

define directive

A define directive defines a name as a macro. Following the directive name define, you write
one of two forms:

m A name not immediately followed by a left parenthesis, followed by any sequence of
preprocessing tokens—to define a macro without parameters

m A name immediately followed by a left parenthesis with no intervening white space,
followed by zero or more distinct parameter names separated by commas, followed by a
right parenthesis, followed by any sequence of preprocessing tokens—to define a macro
with as many parameters as names that you write inside the parentheses

80-N2040-13 Rev. D 46

Qualcomm Hexagon C Library User Guide Preprocessing

You can selectively skip groups of lines within source files by writing an if directive, or one
of the other conditional directives, ifdef or ifndef. You follow the conditional directive by
the first group of lines that you want to selectively skip. Zero or more elif directives follow
this first group of lines, each followed by a group of lines that you want to selectively skip. An
optional else directive follows all groups of lines controlled by elif directives, followed by
the last group of lines you want to selectively skip. The last group of lines ends with an endif
directive.

At most one group of lines is retained in the translation unit—the one immediately preceded
by a directive whose #if expression has a nonzero value. For the following directive, this
expression is defined (X):

#ifdef X

And for the following directive, this expression is !defined (X).

#ifndef X

A #if expression is a conditional expression that the preprocessor evaluates. You can write
only integer constant expressions, with the following additional considerations:

m The expression defined X, or defined (%), is replaced by 1 if x is defined as a macro;
otherwise, it is replaced by 0.

m You cannot write the sizeof or type cast operators. (The translator expands all macro
names and then replaces each remaining name with 0, before it recognizes keywords.)

m The translator may be able to represent a broader range of integers than the target
environment.

m The translator represents type int the same as 1ong, and unsigned int the same as
unsigned long.

m The translator can translate character constants to a set of code values different from the
set for the target environment.

include directive

An include directive includes the contents of a standard header or another source file in a
translation unit. The contents of the specified standard header or source file replace the include
directive. Following the directive name include, write one of the following:

m A standard header name between angle brackets
m A filename between double quotes

m Any other form that expands to one of the two previous forms after macro replacement

80-N2040-13 Rev. D 47

Qualcomm Hexagon C Library User Guide Preprocessing

10.3

line directive

A line directive alters the source line number and filename used by the predefined macros
__LINE and FILE_ . Following the directive name 1ine, write one of the following:

m A decimal integer (giving the new line number of the line following)

m A decimal integer as before, followed by a string literal (giving the new line number and
the new source filename)

m Any other form that expands to one of the two previous forms after macro replacement

undef directive

An undef directive removes a macro definition. You might want to remove a macro definition
so that you can define it differently with a define directive or to unmask any other meaning
given to the name. The name whose definition you want to remove follows the directive name
undef. If the name is not currently defined as a macro, the undef directive has no effect.

Preprocessing phases

Preprocessing translates each source file in a series of distinct phases. The first few phases of
translation:

m Terminate each line with a newline character (NL)

m Convert trigraphs to their single-character equivalents

m Concatenate each line ending in a backslash (\) with the line following

Later phases process include directives, expand macros, and so on to produce a translation
unit. The translator combines separate translation units, with contributions as needed from the
Standard C library, at link time, to form the executable program.

80-N2040-13 Rev. D 48

11 Header files

This chapter describes the header files in the Hexagon C Library in alphabetical order. Each
header file is described, and in turn, all of its function definitions are described in alphabetical
order.

11.1 <assert.h>

Include the standard header <assert .h> to define the macro assert, which is useful for
diagnosing logic errors in the program. You can eliminate the testing code produced by the
macro assert without removing the macro references from the program by defining the macro
NDEBUG in the program before you include <assert .h>. Each time the program includes this
header, it redetermines the definition of the macro assert.

#undef assert

#if defined NDEBUG

#define assert (test) (void)O

#else

#define assert (test) <void expression>
#endif

11.1.1 assert

#undef assert

#if defined NDEBUG

#define assert (test) (void)O

#else

#define assert(test) <void expressions
#endif

If the int expression test equals zero, the macro writes to stderr a diagnostic message that
includes:

m The text of test
m The source filename (the predefined macro FILE)
m The source line number (the predefined macro LINE)

m The function name (the predefined object func , added with C99)
It then calls abort.

You can write the macro assert in the program in any side-effects context.

80-N2040-13 Rev. D 49

Qualcomm Hexagon C Library User Guide Header files

11.2 <complex.h>

[Added with C99]

Include the standard header <complex.h> to define several macros and a host of functions for
use with the three complex arithmetic types, float Complex, double Complex, and long
double Complex. (If you include this header in a C++ program, these three types are
effectively replaced by complex<floats, complex<doubles>, and complex<long doubles,
respectively.)

Unless otherwise specified, functions that can return multiple values return an imaginary part
in the half-open interval (-pi, pil.
The following pragma controls the behavior of complex multiply, divide, and magnitude:

#pragma STD CX LIMITED RANGE [ON|OFF | DEFAULT]

If the parameter is ON, the translator is permitted to use the conventional expressions without
regard to possible intermediate overflow:

(x + T *vy) * (u+ I *vwv)

(x *u -y *v) +I%* (y*u+x*v)
(x+ I *y) / (u+I*v) =
(x*u+y *v) +I* (y*u-zx==ymw))
/ (u*u+ v *v)
abs(x + I * y) = sgrt(x * x + y * y)

The parameter OFF has the same effect as DEFAULT: it restores the original state where such
latitude is not permitted. If the pragma occurs outside an external declaration, it remains in
effect until overridden by another such pragma. If the pragma occurs inside an external
declaration, it must precede all explicit declarations and statements within a compound
statement. It remains in effect until overridden by another such pragma or until the end of the
compound statement.

Many of the functions declared in this header have additional overloads in C++, which behave
much like the generic functions defined in <tgmath.hs>. The following functions have such
additional overloads:

acos conj pow

acosh cos real
arg cosh sin

asin cproj sinh
asinh creal sqgrt
atan exp tan

atanh fabs tanh
carg imag

cimag log

80-N2040-13 Rev. D 50

Qualcomm Hexagon C Library User Guide Header files

// MACROS

#define complex Complex [Notin C++]
#define Complex I (float Complex){0, 1}
#define imaginary Imaginary [Optional]

#ifdef imaginary
#define Imaginary I ((float Imaginary)1l)
#endif

#ifdef imaginary

#define I Imaginary I
felse

#define I Complex I
f#endif

// FUNCTIONS double abs(double Complex left); [C++ only]
float abs(float Complex left); [C++ only]

long double abs(long double Complex left); [C++ only]
double fabs(double Complex left); [C++ only]

float fabs(float Complex left); [C++ only]

long double fabs(long double Complex left); [C++only]
double cabs (double Complex left) ;

float cabsf (float Complex left);

long double cabsl (long double Complex left) ;

double Complex acos (double Complex left); [C++ only]

float Complex acos(float Complex left); [C++ only]

long double Complex acos(long double Complex left); [C++ only]
double _Complex cacos (double Complex left);

float Complex cacosf (float Complex left);

long double Complex cacosl(long double Complex left);

double Complex acosh(double Complex left); [C++ only]

float Complex acosh(float Complex left); [C++ only]

long double Complex acosh(long double Complex left); [C++ only]
double Complex cacosh(double Complex left) ;

float Complex cacoshf (float Complex left);

long double Complex cacoshl (long double Complex left) ;

double arg(double Complex left); [C++ only]

float arg(float Complex left); [C++ only]

long double arg(long double Complex left); [C++ only]
double carg(double Complex left) ;

float carg(float Complex left); [C++ only]

long double carg(long double Complex left); [C++only]
float cargf (float Complex left);

long double cargl (long double Complex left) ;

double Complex asin(double Complex left); [C++ only]

float Complex asin(float Complex left); [C++ only]

long double Complex asin(long double Complex left); [C++ only]
double Complex casin(double Complex left);

float Complex casinf (float Complex left);

long double Complex casinl (long double Complex left);

80-N2040-13 Rev. D 51

Qualcomm Hexagon C Library User Guide Header files

double Complex asinh(double Complex left); [C++ only]

float Complex asinh(float Complex left); [C++ only]

long double Complex asinh(long double Complex left); [C++ only]
double Complex casinh(double Complex left) ;

float Complex casinhf (float Complex left);

long double Complex casinhl (long double Complex left) ;

double Complex atan(double Complex left); [C++ only]

float Complex atan(float Complex left); [C++0nW]

long double Complex atan(long double Complex left); [C++ only]
double Complex catan(double Complex left);

float Complex catanf (float Complex left);

long double Complex catanl (long double Complex left);

double Complex atanh(double Complex left); [C++ only]

float Complex atanh(float _Complex left); [C++onbd

long double Complex atanh(long double Complex left); [C++ only]
double Complex catanh(double Complex left) ;

float Complex catanhf (float Complex left);

long double Complex catanhl (long double Complex left) ;

double Complex conj (double Complex left);

float Complex conj(float Complex left); [C++ only]

long double Complex conj(long double Complex left); [C++ only]
float Complex conjf (float Complex left);

long double Complex conjl(long double Complex left);

double Complex cos(double Complex left); [C++ only]

float Complex cos(float Complex left); [C++ only]

long double Complex cos(long double Complex left); [C++ only]
double _Complex ccos(double _Complex left);

float Complex ccosf (float Complex left);

long double Complex ccosl (long double Complex left);

double Complex cosh(double Complex left); [C++ only]

float Complex cosh(float _Complex left) [C++0nbﬂ

long double Complex cosh(long double _Complex left); [C++only]
double Complex ccosh(double Complex left);

float Complex ccoshf (float Complex left);

long double Complex ccoshl (long double Complex left);

double Complex cproj (double Complex left);

float Complex cproj (float Complex left); [C++ only]

long double Complex cproj (long double Complex left); [C++ only]
float Complex cprojf (float Complex left);

long double Complex cprojl(long double Complex left);

double Complex exp(double Complex left); [C++ only]

float Complex exp(float Complex left); [C++ only]

long double Complex exp (long double _Complex left); [C++ only]
double Complex cexp(double Complex left);

float Complex cexpf (float Complex left);

long double Complex cexpl (long double Complex left);

double imag(double Complex left); [C++ only]

80-N2040-13 Rev. D 52

Qualcomm Hexagon C Library User Guide Header files

float imag(float Complex left); [C++ only]

long double imag(long double _Complex left); [C++ only]
double cimag(double Complex left);

float cimag(float Complex left); [C++only]

long double cimag(long double Complex left); [C++ only]
float cimagf (float Complex left);

long double cimagl (long double Complex left);

double Complex log(double Complex left); [C++ only]

float Complex log(float Complex left); [C++ only]

long double Complex log(long double _Complex left); [C++ only]
double Complex clog(double Complex left);

float Complex clogf (float Complex left);

long double Complex clogl (long double Complex left) ;

double Complex pow(double Complex left, double Complex right); [C++
only]

float Complex pow(float Complex left, float Complex right); [C++
only]

long double Complex pow(long double Complex left, long double
_Complex right); [C++ only]

double Complex cpow (double Complex left, double Complex right) ;
float Complex cpowf (float Complex left, float Complex right);

long double Complex cpowl (long double Complex left, long double
_Complex right) ;

double real (double Complex left); [C++ only]

float real(float Complex left); [C++ only]

long double real (long double _Complex left); [C++ only]
double creal (double Complex left);

float creal (float Complex left); [C++only]

long double creal (long double Complex left); [C++ only]
float crealf(float Complex left);

long double creall(long double Complex left);

double Complex sin(double Complex left); [C++ only]

float Complex sin(float Complex left); [C++ only]

long double Complex sin(long double _Complex left); [C++ only]
double Complex csin(double Complex left);

float Complex csinf (float Complex left);

long double Complex csinl (long double Complex left);

double Complex sinh(double Complex left); [C++ only]

float Complex sinh(float _Complex left) [C++0nbﬂ

long double Complex sinh(long double Complex left); [C++only]
double Complex csinh(double Complex left);

float Complex csinhf (float Complex left) ;

long double Complex csinhl (long double Complex left);

double Complex sqgrt (double Complex left); [C++ only]

float Complex sgrt(float Complex left); [C++ only]

long double Complex sgrt(long double Complex left); [C++ only]
double Complex csgrt(double Complex left);

float Complex csqgrtf(float Complex left);

long double Complex csqgrtl(long double Complex left);

80-N2040-13 Rev. D 53

Qualcomm Hexagon C Library User Guide Header files

double Complex tan(double Complex left); [C++ only]

float Complex tan(float Complex left); [C++ only]

long double Complex tan(long double Complex left); [C++ only]
double Complex ctan(double Complex left);

float _Complex ctanf (float _Complex left);

long double Complex ctanl (long double Complex left);

double Complex tanh(double Complex left); [C++ only]

float Complex tanh(float Complex left); [C++ only]

long double Complex tanh(long double Complex left); [C++ only]
double _Complex ctanh(double _Complex left);

float Complex ctanhf (float Complex left);

long double Complex ctanhl (long double Complex left);

11.2.1 abs, fabs, cabs, cabsf, cabsl

double abs(double Complex left); [C++ only]

float abs(float Complex left); [C++ only]

long double abs(long double Complex left); [C++ only]
double fabs(double Complex left); [C++ only]

float fabs(float Complex left); [C++ only]

long double fabs(long double Complex left); [C++only]
double cabs(double Complex left) ;

float cabsf (float Complex left);

long double cabsl (long double Complex left);

The function returns the magnitude of 1left, |left].

11.2.2 acos, cacos, cacosf, cacosl

double Complex acos(double Complex left); [C++ only]

float Complex acos(float Complex left); [C++ only]

long double Complex acos(long double Complex left); [C++ only]
double Complex cacos (double Complex left);

float Complex cacosf (float Complex left);

long double Complex cacosl(long double Complex left);

The function returns the arccosine of left.

11.2.3 acosh, cacosh, cacoshf, cacoshl

double Complex acosh(double Complex left); [C++ only]

float Complex acosh(float Complex left); [C++ only]

long double Complex acosh(long double Complex left); [C++ only]
double Complex cacosh(double Complex left) ;

float Complex cacoshf (float Complex left);

long double Complex cacoshl (long double Complex left);

The function returns the hyperbolic arccosine of 1eft.

80-N2040-13 Rev. D 54

Qualcomm Hexagon C Library User Guide Header files

11.2.4 arg, carg, cargf, cargl

double arg(double Complex left); [C++ only]

float arg(float Complex left) [C++0n1y]

long double arg(long double Complex left); [C++ only]
double carg(double Complex left) ;

float carg(float Complex left); [C++ only]

long double carg(long double Complex left); [C++only]
float cargf(float Complex left);

long double cargl (long double Complex left);

The function returns the phase angle of 1eft.

11.2.5 asin, casin, casinf, casinl

double Complex asin(double Complex left); [C++ only]

float Complex asin(float Complex left); [C++ only]

long double Complex asin(long double Complex left); [C++ only]
double _Complex casin(double Complex left);

float _Complex casinf (float _Complex left);

long double Complex casinl(long double Complex left);

The function returns the arcsine of left.

11.2.6 asinh, casinh, casinhf, casinhl

double Complex asinh(double Complex left); [C++ only]

float Complex asinh(float Complex left) [C++ only]

long double Complex asinh(long double Complex left); [C++only]
double Complex casinh(double Complex left) ;

float Complex casinhf (float Complex left);

long double Complex casinhl (long double Complex left) ;

The function returns the hyperbolic arcsine of left.

11.2.7 atan, catan, catanf, catanl

double Complex atan(double Complex left); [C++ only]

float Complex atan(float Complex left); [C++ only]

long double Complex atan(long double Complex left); [C++ only]
double Complex catan(double Complex left);

float Complex catanf (float Complex left);

long double Complex catanl(long double Complex left);

The function returns the arctangent of 1eft.

80-N2040-13 Rev. D 55

Qualcomm Hexagon C Library User Guide Header files

11.2.8 atanh, catanh, catanhf, catanhl

double Complex atanh(double Complex left); [C++ only]

float Complex atanh(float _Complex left); [C++ only]

long double Complex atanh(long double Complex left); [C++ only]
double Complex catanh(double Complex left) ;

float Complex catanhf (float Complex left);

long double Complex catanhl (long double Complex left) ;

The function returns the hyperbolic arctangent of left.

11.2.9 complex
#define complex Complex [Notin C++]

The macro expands to the keyword Complex.

11.2.10 _Complex_|

#define Complex I (float Complex) {0, 1}

The macro expands to an expression of type const float _Complex whose real component
is zero and whose imaginary component is one.

11.2.11 conj, conjf, conijl

double Complex conj(double Complex left); [C++ only]

float Complex conj(float Complex left); [C++ only]

long double Complex conj(long double Complex left); [C++ only]
float _Complex conjf (float _Complex left);

long double Complex conjl(long double Complex left);

The function returns the conjugate of 1eft.

11.2.12 cos, ccos, ccosf, ccosl

double Complex cos(double Complex left); [C++ only]

float Complex cos(float Complex left); [C++ only]

long double Complex cos(long double Complex left); [C++ only]
double Complex ccos(double Complex left);

float Complex ccosf (float Complex left);

long double Complex ccosl(long double Complex left);

The function returns the cosine of left.

80-N2040-13 Rev. D 56

Qualcomm Hexagon C Library User Guide Header files

11.2.13 cosh, ccosh, ccoshf, ccoshl

The

double Complex cosh(double Complex left); [C++ only]

float Complex cosh(float Complex left); [C++ only]

long double Complex cosh(long double Complex left); [C++ only]
double Complex ccosh(double Complex left);

float Complex ccoshf (float Complex left);

long double Complex ccoshl(long double Complex left);

function returns the hyperbolic cosine of left.

11.2.14 cproj, cprojf, cprojl

The

double _Complex cproj (double Complex left);

float Complex cproj (float Complex left); [C++ only]

long double Complex cproj(long double Complex left); [C++ only]
float _Complex cprojf(float _Complex left);

long double Complex cprojl(long double Complex left);

function returns a projection of 1eft onto the Riemann sphere. Specifically, if either

component of left is an infinity of either sign, the function returns a value whose real part is
positive infinity and whose imaginary part is zero with the same sign as the imaginary part of

left.

Otherwise, the function returns left.

11.2.15 exp, cexp, cexpf, cexpl

double Complex exp (double Complex left); [C++ only]

float Complex exp(float Complex left); [C++ only]

long double Complex exp(long double Complex left); [C++ only]
double _Complex cexp (double _Complex left);

float _Complex cexpf (float _Complex left);

long double Complex cexpl (long double Complex left);

The function returns the exponential of 1eft.
#ifdef imaginary
#define I Imaginary I
#else
#define I Complex I
#endif
The macro expands to Imaginary I if imaginary is defined; otherwise it expands to
_Complex I.

80-N2040-13 Rev. D

57

Qualcomm Hexagon C Library User Guide Header files

11.2.17 imag, cimag, cimagf, cimagl

double imag(double Complex left); [C++ only]

float imag(float Complex left); [C++ only]

long double imag(long double Complex left); [C++ only]
double cimag(double Complex left);

float cimag(float Complex left); [C++ only]

long double cimag(long double Complex left); [C++ only]
float cimagf (float Complex left);

long double cimagl (long double Complex left) ;

The function returns the imaginary part of left.

11.2.18 imaginary
#define imaginary Imaginary [Optional]

The macro expands to the optional keyword Imaginary, if that keyword is defined by the
implementation.

11.2.19 _Imaginary_|
#ifdef imaginary #define Imaginary I ((float Imaginary)l) #endif

The macro expands to an expression of type const float Imaginary) with value one, but
only if imaginary is defined.

11.2.20 log, clog, clogf, clogl

double Complex log(double Complex left); [C++ only]

float Complex log(float Complex left); [C++ only]

long double Complex log(long double Complex left); [C++ only]
double _Complex clog(double _Complex left);

float _Complex clogf (float _Complex left);

long double Complex clogl (long double Complex left) ;

The function returns the logarithm of 1eft. The branch cuts are along the negative real axis.

In C++, clog is not defined in namespace std, to avoid collisions with the standard error
logging stream object clog.

80-N2040-13 Rev. D 58

Qualcomm Hexagon C Library User Guide Header files

11.2.21 pow, cpow, cpowf, cpowl

double Complex pow(double Complex left, double Complex right); [C++
only]

float Complex pow(float Complex left, float Complex right); [C++
only]

long double Complex pow(long double Complex left, long double
_Complex right); [C++ only]

double Complex cpow (double Complex left, double Complex right) ;
float Complex cpowf (float Complex left, float Complex right);

long double Complex cpowl (long double Complex left, long double
_Complex right) ;

The function returns left to the power right, left”*right. The branch cut for left is
along the negative real axis.

11.2.22 real, creal, crealf, creall

double real (double Complex left); [C++ only]

float real (float Complex left); [C++ only]

long double real(long double Complex left); [C++only]
double creal (double _Complex left);

float creal(float Complex left); [C++only]

long double creal (long double Complex left); [C++ only]
float crealf(float Complex left);

long double creall(long double Complex left);

The function returns the real part of left.

11.2.23 sin, csin, csinf, csinl

double Complex sin(double Complex left); [C++ only]

float Complex sin(float Complex left); [C++ only]

long double Complex sin(long double Complex left); [C++ only]
double Complex csin(double Complex left);

float Complex csinf (float Complex left);

long double Complex csinl (long double Complex left);

The function returns the sine of left.

11.2.24 sinh, csinh, csinhf, csinhl

double Complex sinh(double Complex left); [C++ only]

float Complex sinh(float Complex left); [C++ only]

long double Complex sinh(long double Complex left); [C++ only]
double Complex csinh(double Complex left);

float Complex csinhf (float Complex left);

long double Complex csinhl (long double Complex left);

The function returns the hyperbolic sine of 1left.

80-N2040-13 Rev. D 59

Qualcomm Hexagon C Library User Guide Header files

11.2.25 sq

The

int

rt, csqrt, csqrtf, csqrtl

double Complex sqgrt(double Complex left); [C++ only]

float Complex sqgrt(float Complex left); [C++ only]

long double Complex sqrt(long double Complex left); [C++ only]
double Complex csqgrt(double Complex left);

float Complex csqrtf(float Complex left);

long double Complex csqgrtl(long double Complex left);

function returns the square root of 1eft, left” (1/2), with phase angle in the half-open
erval (-pi/2, pi/2].The branch cuts are along the negative real axis.

11.2.26 tan, ctan, ctanf, ctanl

The

double Complex tan(double Complex left); [C++ only]

float Complex tan(float Complex left); [C++ only]

long double Complex tan(long double Complex left); [C++ only]
double Complex ctan(double Complex left);

float _Complex ctanf (float _Complex left);

long double Complex ctanl (long double Complex left);

function returns the tangent of left.

11.2.27 tanh, ctanh, ctanhf, ctanhl

The

double Complex tanh(double Complex left); [C++ only]

float Complex tanh(float Complex left); [C++ only]

long double Complex tanh(long double Complex left); [C++ only]
double Complex ctanh(double Complex left);

float _Complex ctanhf (float _Complex left);

long double Complex ctanhl(long double Complex left);

function returns the hyperbolic tangent of 1eft.

80-N2040-13 Rev. D

60

Qualcomm Hexagon C Library User Guide Header files

11.3 <ctype.h>

Include the standard header <ctype.h> to declare several functions that are useful for
classifying and mapping codes from the target character set. Every function that has a
parameter of type int can accept the value of the macro EOF or any value representable as
type unsigned char. Thus, the argument can be the value returned by any of the functions
fgetc, fputc, getc, getchar, putc, putchar, tolower, toupper, and ungetc. You must
not call these functions with other argument values.

Other library functions use these functions. The function scanf, for example, uses the
function isspace to determine valid white space within an input field.

The character classification functions are strongly interrelated. Many are defined in terms of
other functions. For characters in the basic C character set, Figure 11-1 shows the
dependencies between these functions.

isxdigit) o
:Lsd:.g:Lt

isalnum

isupper A-E
+
isalpha

isprint lSP+u+HCt lSl?_wer
, € __isblank "
i==pace +

+

HT

izcntrl)

++ + extendable outside "C" locale

++ extendable in any locale

Figure 11-1 Character classification functions

The symbol + indicates functions that can define additional characters in locales other than the
“C” locale. Boldface indicates a feature added with C99.

Figure 11-1 shows that the function isprint returns nonzero for space or for any character for
which the function isgraph returns nonzero. The function isgraph, in turn, returns nonzero
for any character for which either the function isalnum or the function ispunct returns
nonzero. The function isdigit, on the other hand, returns nonzero only for the digits 0-9.

An implementation can define additional characters that return nonzero for some of these
functions. Any character set can contain additional characters that return nonzero for:

m iscntrl (provided the characters cause isprint to return zero)

m ispunct (provided the characters cause isalnum to return zero)

80-N2040-13 Rev. D 61

Qualcomm Hexagon C Library User Guide

Header files

The diagram indicates with ++ those functions that can define additional characters in any
character set. Moreover, locales other than the “C” locale can define additional characters that

return nonzero for:

m isalpha, isupper, and islower (provided the characters cause iscntrl, isdigit,
ispunct, and isspace to return zero)

m isblank (provided the characters cause isalnum to return zero)

m isspace (provided the characters cause isprint to return zero)

An implementation can define locales other than the “C” locale in which a character can cause
isalpha (and hence isalnum) to return nonzero, yet still cause isupper and islower to

return zero.

int isalnum(int
int isalpha(int
int isascii (int
int isblank (int
int iscntrl (int
int isdigit (int
int isgraph (int
int islower (int
int isprint (int
int ispunct (int
int isspace (int
int isupper (int

int isxdigit (int

int toascii (int
int tolower (int

int tolower (int

int Eoupper(int

int _toupper (int

11.3.1 isalnum

int isalnum(int

c);

c);

c); [POSIX]
c); [Added with C99]
c);

c);

c);

c);

c);

c);

c);

c);

c);

c); [POSIX]
c);

c); [POSIX]
c);

c); [POSIX]

c);

The function returns nonzero if ¢ is any of:

abcdefgh
ABCDEVFGH
012 345¢67

Or any other locale-specific alphabetic character.

ijklmnop
I JKLMNOP
8 9

gr stuvwzx
QRSTUVWX

Yy
Y

z
Z

80-N2040-13 Rev. D

62

Qualcomm Hexagon C Library User Guide

Header files

11.3.2

11.3.3

11.3.4

11.3.5

11.3.6

isalpha
int isalpha(int c);

The function returns nonzero if ¢ is any of:

abcdefghijklmnopg

rs tuvwx
ABCDEFGHIUJUKLMNOPQQRSTUVWX

Or any other locale-specific alphabetic character.

isascii

int isascii(int c); [POSIX]

The function tests for an ASCII character, which is any character with a value in the range

from 0 to 127, inclusive.

The function is defined on all integer values.

isblank
int isblank (int c); [Added with C99]

The function returns nonzero if ¢ is any of:

HT space

Or any other locale-specific blank character.

iscntrl

int iscntrl (int c¢);

The function returns nonzero if ¢ is any of:

BEL BS CR FF HT NL VT

Or any other implementation-defined control character.

isdigit
int isdigit (int c);

The function returns nonzero if ¢ is any of:

01234567829

80-N2040-13 Rev. D

63

Qualcomm Hexagon C Library User Guide Header files

11.3.7 isgraph
int isgraph(int c);

The function returns nonzero if c is any character for which either isalnum or ispunct
returns nonzero.

11.3.8 islower

int islower (int c);

The function returns nonzero if ¢ is any of:

abcdefghijklmnopgrstuvwzxyz

Or any other locale-specific lowercase character.

11.3.9 isprint

int isprint (int c);

The function returns nonzero if ¢ is space or a character for which isgraph returns nonzero.

11.3.10 ispunct

int ispunct (int c);

The function returns nonzero if ¢ is any of:
P s et () s <=>2 0N x4, - L/ {]}~

Or any other implementation-defined punctuation character.

11.3.11 isspace
int isspace (int c¢);

The function returns nonzero if c is any of:

CR FF HT NL VT space

Or any other locale-specific space character.

11.3.12 isupper
int isupper (int c);

The function returns nonzero if ¢ is any of:

ABCDEFGHIJKLMNOPQRSTUVWIXY?Z

Or any other locale-specific uppercase character.

80-N2040-13 Rev. D 64

Qualcomm Hexagon C Library User Guide Header files

11.3.13 isxdigit

int isxdigit (int c);

The function returns nonzero if ¢ is any of:

0123456789 abcdefABCDETF

11.3.14 toascii

int toascii(int c¢); [POSIX]
The function returns the argument with all but the lower 7 bits cleared.

The function always returns a valid ASCII character. The result is a non-negative integer in the
range from 0 to 127, inclusive.

11.3.15 tolower

int tolower (int c¢);

The function returns the corresponding lowercase letter if one exists and if isupper (c);
otherwise, it returns c.

11.3.16 _tolower

int _tolower (int c¢); [POSIX]

The function returns the corresponding lowercase letter if one exists and if isupper (c);
otherwise, it returns c.

11.3.17 toupper
int toupper (int c¢);

The function returns the corresponding uppercase letter if one exists and if islower (c);
otherwise, it returns c.

11.3.18 _toupper
int _toupper (int c¢); [POSIX]

The function returns the corresponding uppercase letter if one exists and if islower (c);
otherwise, it returns c.

80-N2040-13 Rev. D 65

Qualcomm Hexagon C Library User Guide

Header files

11.4 <errno.h>

Include the standard header <errno.h> to test the value stored in errno by certain library
functions. At program startup, the value stored is zero. Library functions store only values
greater than zero. Any library function can alter the value stored, but only those cases where a
library function is explicitly required to store a value are documented here.

To test whether a library function stores a value in errno, the program should store the value
zero there immediately before it calls the library function.

#define
#define
#define
#define

EDOM <#if expressions

EILSEQ <#if expression> [Added with Amendment 1]
ERANGE <#if expressions>

errno <int modifiable lvalue>

An implementation can define additional macros in this standard header that you can test for
equality with the value stored. All these additional macros have names that begin with E. The
following macros, for example, are added by POSIX:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

E2BIG [argument list too long]

EACCES [process lacks access permission]
EAGAIN [resource temporarily unavailable]
EBADF [bad file descriptor]

EBADMSG [bad message]

EBUSY [resource is busy]

ECANCELED [operation canceled]

ECHILD [no child process present]

EDEADLK [resource deadlock was avoided]
EEXIST [file already exists]

EFAULT [bad memory address]

EFBIG [file would become too big]
EINPROGRESS [asynchronous operation not completed]
EINTR [operation interrupted by a signall
EINVAL [invalid argument]

EIO [input/output error]

EISDIR [can't write to a directory]
EMFILE [process has too many files open]
EMLINK [too many links to a file]
EMSGSIZE [bad message buffer size]
ENAMETOOLONG [file name too long]

ENFILE [system has too many files open]
ENODEV [invalid device operation]

ENOENT [bad file or directory name]
ENOEXEC [can't execute file]

ENOLCK [too many locks on a file or record]
ENOMEM [insufficient memory]

ENOSPC [insufficient space on a devicel]
ENOSYS [unimplemented function]

ENOTDIR [invalid directory name]

ENOTEMPTY [directory not empty]
ENOTSUP [unsupported featurel

ENOTTY [bad I/O control operation]
ENXIO [bad device specifier]
EPERM [process lacks permission]
EPIPE [write to a broken pipel

[

EROFS [write to a read-only file system]

80-N2040-13 Rev. D

66

Qualcomm Hexagon C Library User Guide Header files

#define ESPIPE [seek on a pipe]

#define ESRCH [process search failed]
#define ETIMEDOUT [time limit expired]
#define EXDEV [link across file systems]

1141 EDOM

#define EDOM <#if expression>

The macro yields the value stored in errno on a domain error.

11.4.2 EILSEQ

#define EILSEQ <#if expression> [Added with Amendment 1]

The macro yields the value stored in errno on an invalid multibyte sequence.

11.4.3 ERANGE

#define ERANGE <#if expression>

The macro yields the value stored in errno on a range error.

11.4.4 errno

#define errno <int modifiable lvalue>

The macro designates an object that is assigned a value greater than zero on certain library
errors.

80-N2040-13 Rev. D 67

Qualcomm Hexagon C Library User Guide Header files

11.5

<fcntl.h>

This file contains the function for file descriptor control.
int fentl (int £4, int cmd, ...); [POSIX]
fentl
int fentl (int £4, int cmd, ...); [POSIX]

fcnt1 provides for control over descriptors. The argument fd is a descriptor to be operated on
by cmd as described below. The third parameter is called arg and is technically a pointer to
void, but it is interpreted as an int by some commands and ignored by others.

Table 11-1 lists the fent1l commands.

Table 11-1 fcntl commands

Command Description

F_DUPFD Return a new descriptor as follows:

m Lowest numbered available descriptor greater than or equal to arg, which is
interpreted as an int.

Same object references as the original descriptor.

New descriptor shares the same file offset if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is cleared to
remain open across execve system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor £d as FD_CLOEXEC.

If the returned value ANDed with Fp_cLoExEC is 0, the file will remain open across
exec, otherwise the file will be closed upon execution of exec (arg is ignored).

F_SETFD Set the close-on-exec flag associated with £d to arg, where arg is either 0 or
FD_CLOEXEC, as described above.

F_GETFL Get descriptor status flags, as described below (arg is ignored).

F_SETFL Set descriptor status flags to arg, which is interpreted as an int.

F_GETOWN Get the process ID or process group currently receiving s1cIo and SIGURG signals;

process groups are returned as negative values (arg is ignored).

F_SETOWN Set the process or process group to receive s1G1o and sIGURG signals.

Process groups are specified by supplying arg as negative, otherwise arg is
interpreted as a process ID. The argument arg is interpreted as an int.

F_CLOSEM Close all file descriptors greater than or equal to £d.

F_MAXFD Return the maximum file descriptor number currently open by the process.

Table 11-2 lists the flags for F GETFL and F_SETFL.

80-N2040-13 Rev. D 68

Qualcomm Hexagon C Library User Guide Header files

Table 11-2 fcntl flags

Flag Description
O_NONBLOCK Non-blocking 1/O; if no data is available to a read call, or if a write

operation would block, the read or write call returns -1 with the error
EAGAIN.

O_APPEND Force each write to append at the end of file; corresponds to the o_arpPEND
flag of open.

O_ASYNC Enable the s1c10 signal to be sent to the process group when 1/O is
possible, such as, upon availability of data to be read.

Several commands are available for doing advisory file locking; they all operate on the
following structure:

struct flock ({

off t 1 start; /* starting offset */

off t 1 len; /* len = 0 means until end of file */
pid t 1 pid; /* lock owner */

short 1 type; /* lock type: read/write, etc. */
short 1 whence; /* type of 1 start */

Vi

Table 11-3 lists the commands available for advisory record locking.

Table 11-3 Commands for advisory record locking

Command Description

F_GETLK Get the first lock that blocks the lock description pointed to by the third
argument, arg, taken as a pointer to a struct flock (see above).

The information retrieved overwrites the information passed to fcnt1 in the
flock structure.

If no lock is found that would prevent this lock from being created, the
structure is left unchanged by this function call except for the lock type
1_type, Which is set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the lock description pointed to
by the third argument, arg, taken as a pointer to a struct flock (see
above).

As specified by the value of 1_type, F_SETLK is used to establish shared
(or read) locks (F_RrpLCK) or exclusive (or write) locks, (F_wrLck), as well as
remove either type of lock (F_uNLCK).

If a shared or exclusive lock cannot be set, fcnt1 returns immediately with

EAGAIN.

F_SETLKW This command is the same as F_seTLk except that if a shared or exclusive
lock is blocked by other locks, the process waits until the request can be
satisfied.

If a signal that is to be caught is received while fcnt1 is waiting for a region,
the £cnt1 will be interrupted if the signal handler has not specified the
SA RESTART.

When a shared lock has been set on a segment of a file, other processes can set shared locks on

that segment or a portion of it. A shared lock prevents any other process from setting an

exclusive lock on any portion of the protected area. A request for a shared lock fails if the file

descriptor was not opened with read access.

80-N2040-13 Rev. D

69

Qualcomm Hexagon C Library User Guide Header files

An exclusive lock prevents any other process from setting a shared lock or an exclusive lock
on any portion of the protected area. A request for an exclusive lock fails if the file was not
opened with write access.

The value of 1 _whence is SEEK_SET, SEEK_CUR, or SEEK_END to indicate that the relative
offset, 1 start bytes, will be measured from the start of the file, current position, or end of
the file, respectively. The value of 1_1en is the number of consecutive bytes to be locked. If
1 len is negative, the result is undefined. The 1 _pid field is only used with F_GETLX to
return the process ID of the process holding a blocking lock. After a successful F GETLK
request, the value of 1 whence is SEEK_SET.

Locks may start and extend beyond the current end of a file, but may not start or extend before
the beginning of the file. A lock is set to extend to the largest possible value of the file offset
for that file if 1 _lenissetto zero. If 1 whence and 1_start point to the beginning of the file,
and 1_1len is zero, the entire file is locked. If an application wishes only to do entire file
locking, the £1ock system call is much more efficient.

There is at most one type of lock set for each byte in the file. Before a successful return from
an F_SETLK or an F_SETLKW request when the calling process has previously existing locks on
bytes in the region specified by the request, the previous lock type for each byte in the
specified region is replaced by the new lock type. As specified above under the descriptions of
shared locks and exclusive locks, an F_SETLK or an F_SETLKW request fails or blocks
respectively when another process has existing locks on bytes in the specified region and the
type of any of those locks conflicts with the type specified in the request.

This interface follows the completely stupid semantics of AT&T System V UNIX and IEEE
Std. 1003.1-1988 (“POSIX.17) that require that all locks associated with a file for a given
process are removed when any file descriptor for that file is closed by that process. This
semantic means that applications must be aware of any files that a subroutine library may
access.

For example, if an application for updating the password file locks the password file database
while making the update, and then calls getpwnam to retrieve a record, the lock will be lost
because getpwnam opens, reads, and closes the password database. The database close will
release all locks that the process has associated with the database, even if the library routine
never requested a lock on the database.

Another minor semantic problem with this interface is that locks are not inherited by a child
process created using the fork function. The £1ock interface has much more rational last
close semantics and allows locks to be inherited by child processes. Calling £1ock is
recommended for applications that want to ensure the integrity of their locks when using
library routines or wish to pass locks to their children. The £1ock and fcntl locks can be
safely used concurrently.

All locks associated with a file for a given process are removed when the process terminates.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by
attempting to lock the locked region of another process. This implementation detects that
sleeping until a locked region is unlocked would cause a deadlock and fails with an EDEADLK
error.

80-N2040-13 Rev. D 70

Qualcomm Hexagon C Library User Guide Header files

On successful completion, the return value depends on cmd. Table 11-4 lists the possible
return values.

Table 11-4 fcntl return values

Value Description
F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is defined).
F_GETFL Value of flags.
F_GETOWN Value of file descriptor owner.
F_MAXFD Value of the highest file descriptor open by the process.
Other Value other than -1.

If the operation fails, the return value is -1, and errno is set to indicate the error.

80-N2040-13 Rev. D 71

Qualcomm Hexagon C Library User Guide Header files

11.6 <fenv.h>

[Added with C99]

Include the standard header <fenv.h> to define two types, several macros, and several
functions that test and control floating point status, if the implementation permits. The
functionality matches IEC 60559, but it can be applied to similar floating point hardware.
Floating Point status can be represented in an object of type fexcept_t. It forms part of the
floating point control, which determines the behavior of floating point arithmetic. A copy of
the floating point control can be represented in an object of type fenv t.

Another part of the floating point control is the rounding mode, representable as a value of
type int, which determines how floating point values convert to integers. The rounding
modes are:

m Downward, toward the nearest more negative integer

m To nearest, toward the nearest integer with the closer value, or toward the nearest even
integer if two integers are equally near

m Toward zero, toward the nearest integer closer to zero (also called truncation)

m Upward, toward the nearest more positive integer
An implementation might define additional rounding modes.

By convention, a C function does not alter the floating point control, nor assume other than the
default settings for the floating point control, without explicitly documenting the fact. Any C
function can change the floating point status by reporting one of several floating point
exceptions:

m An inexact floating point exception can occur when a finite floating point result cannot
be exactly represented, as in 2.0 / 3.0.

m Aninvalid floating point exception can occur when a floating point operation involves
an invalid combination of operators and operands, as in 0.0 / 0.0.

= An overflow floating point exception can occur when the magnitude of a finite floating
point result is too large to represent, as in DBL_MAX or DBL,_MIN.

m An underflow floating point exception can occur when the magnitude of a finite floating
point result is too small to represent, as in DBL_MIN or DBL_MAX.

m A zero-divide floating point exception can occur when a floating point divide has a finite
dividend and a zero divisor, as in 1.0 / 0.0.

An implementation may define additional floating point exceptions.

Reporting an exception sets a corresponding indicator in the floating point status. It can also
raise a floating point exception, which can result in a hardware trap or the raising of a signal.

80-N2040-13 Rev. D 72

Qualcomm Hexagon C Library User Guide

Header files

The following pragma informs the translator whether the program intends to control and test
floating point status:

#pragma

STD FENV_ACCESS [ON|OFF|DEFAULT]

If the parameter is ON, the program may use the functions declared in this header to control
and test floating point status. If the parameter is OFF, the use of these functions is disallowed.
The parameter DEFAULT restores the original state, which is implementation defined. If the
pragma occurs outside an external declaration, it remains in effect until overridden by another
such pragma. If the pragma occurs inside an external declaration, it must precede all explicit
declarations and statements within a compound statement. It remains in effect until overridden
by another such pragma or until the end of the compound statement. On a transition from OFF
to ON, floating point status flags are unspecified and the floating point control is in its default

state.

/* MACROS */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

FE DIVBYZERO <integer constant expressions> [Optional]
FE INEXACT <integer constant expressions> [Optional]

FE INVALID <integer constant expressions> [Optional]

FE OVERFLOW <integer constant expressions> [Optional]
FE _UNDERFLOW <integer constant expressions> [Optional]
FE ALL EXCEPT <integer constant expressions> [Optional]
FE DOWNWARD <integer constant expressions> [Optional]
FE_TONEAREST <integer constant expressions> [Optional]
FE_TOWARDZERO <integer constant expressions> [Optional]
FE UPWARD <integer constant expressions> [Optional]

FE DFL_ENV <const *fenv t rvalues>

/* TYPES */ typedef o-type fenv t;

typedef

i-type fexcept t;

/* FUNCTIONS */

int feclearexcept (int except) ;

int fegetexceptflag(fexcept t *pflag, int except);
int feraiseexcept (int except);

int fesetexceptflag(const fexcept t *pflag, int except);
int fetestexcept (int except) ;

int fegetround(void) ;

int fesetround (int mode) ;

int fegetenv(fenv t *penv) ;

int feholdexcept (fenv_t *penv) ;

int fesetenv(const fenv t *penv);

int feupdateenv (const fenv t *penv) ;

fexcept

t fegettrapenable (void); [non-standard]

int fesettrapenable(fexcept t enables); [non-standard]

80-N2040-13 Rev. D

73

Qualcomm Hexagon C Library User Guide Header files

11.6.1

11.6.2

11.6.3

11.6.4

11.6.5

FE_ALL_EXCEPT

#define FE ALL EXCEPT <integer constant expressions [Optional]

The macro expands to an integer value that, when ANDed with a value of type fexcept_t,
yields a nonzero value only if the indicator is set for one or more floating point exceptions.
The macro is not defined if the functions declared in this header cannot control floating point
exceptions.

FE_DFL_ENV

#define FE DFL_ENV <const *fenv_t rvalue>

The macro expands to a pointer to an object that describes the settings for the floating point
control at program startup.

FE_DIVBYZERO

#define FE DIVBYZERO <integer constant expressions [Optional]

The macro expands to an integer value that, when ANDed with a value of type fexcept t,
yields a nonzero value only if the indicator is set for a zero-divide floating point exception.
The macro is not defined if the functions declared in this header cannot control floating point
exceptions.

FE_DOWNWARD

#define FE DOWNWARD <integer constant expressions> [Optional]

The macro expands to an integer value accepted as an argument to fesetround and returned
by fegetround to indicate the downward rounding mode. The macro is not defined if the
functions declared in this header cannot control the rounding mode.

FE_INEXACT

#define FE INEXACT <integer constant expressions> [Optional]

The macro expands to an integer value that, when ANDed with a value of type fexcept_t,
yields a nonzero value only if the indicator is set for an inexact floating point exception. The
macro is not defined if the functions declared in this header cannot control floating point
exceptions.

80-N2040-13 Rev. D 74

Qualcomm Hexagon C Library User Guide Header files

11.6.6 FE_INVALID

#define FE INVALID <integer constant expressions> [Optional]

The macro expands to an integer value that, when ANDed with a value of type fexcept t
yields a nonzero value only if the indicator is set for an invalid floating point exception. The
macro is not defined if the functions declared in this header cannot control floating point
exceptions.

11.6.7 FE_TONEAREST

#define FE TONEAREST <integer constant expressions [Optional]

The macro expands to an integer value accepted as an argument to fesetround and returned
by fegetround to indicate the to nearest rounding mode. The macro is not defined if the
functions declared in this header cannot control the rounding mode.

11.6.8 FE_TOWARDZERO

#define FE TOWARDZERO <integer constant expressions> [Optional]

The macro expands to an integer value accepted as an argument to fesetround and returned
by fegetround to indicate the toward zero rounding mode. The macro is not defined if the
functions declared in this header cannot control the rounding mode.

11.6.9 FE_OVERFLOW

#define FE OVERFLOW <integer constant expressions> [Optional]

The macro expands to an integer value that, when ANDed with a value of type fexcept_t,
yields a nonzero value only if the indicator is set for an overflow floating point exception. The
macro is not defined if the functions declared in this header cannot control floating point
exceptions.

11.6.10 FE_UNDERFLOW

#define FE UNDERFLOW <integer constant expressions [Optional]

The macro expands to an integer value that, when ANDed with a value of type fexcept_t,
yields a nonzero value only if the indicator is set for an underflow floating point exception.
The macro is not defined if the functions declared in this header cannot control floating point
exceptions.

80-N2040-13 Rev. D 75

Qualcomm Hexagon C Library User Guide Header files

11.6.11 FE_UPWARD

#define FE UPWARD <integer constant expressions> [Optional]

The macro expands to an integer value accepted as an argument to fesetround and returned
by fegetround to indicate the upward rounding mode. The macro is not defined if the
functions declared in this header cannot control the rounding mode.

11.6.12 fenv _t

typedef o-type fenv t;

The type is an object type o-type that can represent the settings stored in the floating point
control.

11.6.13 feclearexcept

int feclearexcept (int except) ;

The function attempts to clear the exceptions selected by except in the floating point status
portion of the floating point control. It returns zero only if except is zero or all the exceptions
selected by except are successfully cleared.

11.6.14 fegettrapenable

fexcept t fegettrapenable(void); [non-standard]

The function returns the current floating point enable mask from the floating point control, or
(fexcept_t) (-1) if it cannot be determined. For an exception selected by except (such as
FE_OVERFLOW), an operation that raises the exception results in a hardware trap or the raising
of a signal only if fegettrapenable() & except isnonzero. At program startup,
fegettrapenable () returns zero.

11.6.15 fegetenv

int fegetenv(fenv_t *penv) ;

The function attempts to store the settings in the floating point control at *penv. It returns zero
only if the store succeeds.

11.6.16 fegetexceptflag
int fegetexceptflag(fexcept t *pflag, int except) ;

The function attempts to store in *pflag a representation of the exceptions selected by
except from the floating point status portion of the floating point control. It returns zero only
if except is zero or all the exceptions selected by except are successfully stored.

80-N2040-13 Rev. D 76

Qualcomm Hexagon C Library User Guide Header files

11.6.17 fegetround

int fegetround(void) ;

The function returns the current rounding mode from the floating point control, or a negative
value if it cannot be determined.

11.6.18 feholdexcept

int feholdexcept (fenv_t *penv) ;

The function stores the settings in the floating point control at *penv. It also clears all
exceptions in the floating point status portion of the floating point control and endeavors to
establish settings that will not raise any exceptions.

The effect is equivalent to calling fegetenv (penv) followed by
feclearexcept (FE_ALL EXCEPT) and fesettrapenable (0). The function returns zero
only if it succeeds in establishing such settings.

You can use this function in conjunction with feupdateenv to defer the raising of exceptions
until spurious ones are cleared, as in:

fenv t env;

feholdexcept (&env) ; // save environment

<evaluate expressions> // may accumulate exceptions
feclearexcept (FE_INEXACT) ; // clear unwanted exception
feupdateenv (&env) ; // raise any remaining exceptions

11.6.19 feraiseexcept

int feraiseexcept (int except) ;

The function attempts to raise the floating point exceptions specified by except. Whether it
raises an inexact floating point exception after an overflow floating point exception or an
underflow floating point exception is implementation-defined. It returns zero only if except is
zero or all the exceptions selected by except are successfully raised.

11.6.20 fesetenv

int fesetenv(const fenv_t *penv);

The function attempts to restore the settings in the floating point control from#*penv. It returns
zero only if the settings are successfully restored.

The settings must be determined by FE_DFL_ENV or by an earlier call to fegetenv or
feholdexcept. Otherwise, if fetestexcept (fegettrapenable ()) is nonzero for the
restored settings, it is unspecified whether the function evaluation results in a hardware trap or
the raising of a signal.

80-N2040-13 Rev. D 77

Qualcomm Hexagon C Library User Guide Header files

11.6.21 fesetexceptflag

int fesetexceptflag(const fexcept t *pflag, int except);

The function attempts to set the exceptions selected by except in the floating point status
portion of the floating point control to the values of the corresponding bits selected by except
& *pflag. It returns zero only if except is zero or all the exceptions selected by except &
*pflag are successfully set.

The value stored in *pflag must be determined by an earlier call to fegetexceptflag,
without an intervening call to fesettrapenable. Otherwise, if fegettrapenable() &
except & *pflag is nonzero, it is unspecified whether the function evaluation results in a
hardware trap or the raising of a signal.

11.6.22 fesetround

int fesetround(int mode) ;

The function sets the current rounding mode from mode in the floating point control. An
invalid value of mode leaves the rounding mode unchanged. The function returns zero only if
the rounding mode is successfully set to mode.

11.6.23 fesettrapenable

int fesettrapenable(fexcept t enables); [non-standard]

The function sets the current floating point enable mask from enables. An invalid value of
enables leaves the floating point enable mask unchanged. The function returns zero only if the
floating point enable mask is successfully set to enables.

If fetestexcept (enables) is nonzero, it is unspecified whether
fesettrapenable (enables) results in a hardware trap or the raising of a signal.

11.6.24 fetestexcept

int fetestexcept (int except) ;

The function returns a nonzero value only if one or more of the exceptions selected by except
are set in the floating point status portion of the floating point control.

80-N2040-13 Rev. D 78

Qualcomm Hexagon C Library User Guide Header files

11.6.25 feupdateenv

void feupdateenv(const fenv t *penv) ;

The function effectively executes the following:

int except = fetestexcept (FE_ALL_ EXCEPT); fesetenv (penv) ;
feraiseexcept (except) ;

Thus, it restores the settings in the floating point control from*penv, after first saving the
exceptions selected by the current floating point status stored in the floating point control. The
function then raises the saved exceptions. It returns zero only if the settings are successfully
restored.

The restored settings must be determined by FE_DFL_ENV or by an earlier call to fegetenv or
feholdexcept. Otherwise, it is unspecified whether the call fesetenv (penv) results in a
hardware trap or the raising of a signal.

11.6.26 fexcept_t

typedef i-type fexcept t;

The type is an integer type i-type that can represent the floating point status.

80-N2040-13 Rev. D 79

Qualcomm Hexagon C Library User Guide

Header files

11.7 <float.h>

Include the standard header <f1loat .h> to determine various properties of floating point type

representations. This header is available even in a freestanding implementation.

You can test the values of any of the integer macros except FLT ROUNDS in an if directive.
(The macros expand to #1if expressions.) All other macros defined in this header expand to
floating point constant expressions.

Some target environments can change the rounding and error-reporting properties of floating
point type representations while the program is running.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

11.7.1 DBL_DIG

#define

FLT RADIX <#if expression >= 2>
FLT ROUNDS <integer rvalues

FLT EVAL METHOD <#if expression> [Added with C99]
DECIMAL DIG <#if expression> >= 10 [Added with C99]

DBL DIG <#if expression >= 10>
DBL_EPSILON <double constant <= 10°(-9)>
DBL MANT DIG <#if expression>

DBL MAX <double constant >= 10%37>

DBL MAX 10 EXP <#if expression >= 37>
DBL MAX EXP <#if expression>

DBL MIN <double constant <= 10" (-37)>
DBL MIN 10 EXP <#if expression <= -37>
DBL MIN_EXP <#if expression>

FLT DIG <#if expression >= 6>

FLT EPSILON <float constant <= 10" (-5)>
FLT MANT DIG <#if expression>

FLT MAX <float constant >= 10737>

FLT MAX 10_EXP <#if expression >= 37>
FLT MAX EXP <#if expression>

FLT MIN <float constant <= 10*(-37)>
FLT MIN 10 EXP <#if expression <= -37>
FLT MIN EXP <#if expression>

LDBL DIG <#if expression >= 10>

LDBL EPSILON <long double constant <= 10%(-9)>

LDBL_MANT DIG <#if expression>

LDBL MAX <long double constant >= 10737>
LDBL MAX 10 EXP <#if expression >= 37>
LDBL MAX EXP <#if expressions>

LDBL MIN <long double constant <= 10" (-37)>
LDBL_MIN 10 EXP <#if expression <= -37>
LDBL_ MIN EXP <#if expression>

DBL DIG <#if expression >= 10>

The macro yields the precision in decimal digits for type double.

80-N2040-13 Rev. D

80

Qualcomm Hexagon C Library User Guide Header files

11.7.2

11.7.3

11.7.4

11.7.5

11.7.6

11.7.7

11.7.8

DBL_EPSILON

#define DBL EPSILON <double constant <= 10" (-9)>

The macro yields the smallest X of type double suchthat 1.0 +X != 1.0.

DBL_MANT_DIG

#define DBL_MANT DIG <#if expression>

The macro yields the number of mantissa digits, base FLT RADIX, for type double.

DBL_MAX

#define DBL MAX <double constant »= 10737>

The macro yields the largest finite representable value of type double.

DBL_MAX_10_EXP

#define DBL_MAX 10 _EXP <#if expression >= 37>

The macro yields the maximum integer X, such that 10”x is a finite representable value of type
double.

DBL_MAX_EXP

#define DBL MAX EXP <#if expression>

The macro yields the maximum integer X, such that FLT RADIX™ (X - 1) is a finite
representable value of type double.

DBL_MIN

#define DBL MIN <double constant <= 10" (-37)>

The macro yields the smallest normalized, finite representable value of type double.

DBL_MIN_10_EXP

#define DBL MIN 10 EXP <#if expression <= -37>

The macro yields the minimum integer X such that 10”X is a normalized, finite representable
value of type double.

80-N2040-13 Rev. D 81

Qualcomm Hexagon C Library User Guide Header files

11.7.9 DBL_MIN_EXP

#define DBL_ MIN EXP <#if expression>

The macro yields the minimum integer X such that FLT RADIX™ (X - 1) is a normalized,
finite representable value of type double.

11.7.10 DECIMAL_DIG

#define DECIMAL DIG <#if expression >= 10> [Added with C99]

The macro yields the minimum number of decimal digits needed to represent all the
significant digits for type long double.

11.7.11 FLT_DIG

#define FLT DIG <#if expression >= 6>

The macro yields the precision in decimal digits for type float.

11.7.12 FLT_EPSILON

#define FLT EPSILON <float constant <= 10" (-5)>

The macro yields the smallest X of type £1oat suchthat1.0 +x != 1.0.

11.7.13 FLT_EVAL_METHOD

#define FLT EVAL METHOD <#if expressions> [Added with C99]

The macro yields a value that describes the evaluation mode for floating point operations. The
values are:

m -1 if the mode is indeterminate
m 0 if no promotions occur
m 1 if float values promote to double

m 2 if float and double values promote to long double

An implementation can define additional negative values for this macro.

11.7.14 FLT_MANT_DIG

#define FLT MANT DIG <#if expression>

The macro yields the number of mantissa digits, base FLT RADIX, for type float.

80-N2040-13 Rev. D 82

Qualcomm Hexagon C Library User Guide Header files

11.7.15

11.7.16

11.7.147

11.7.18

11.7.19

11.7.20

11.7.21

FLT_MAX

#define FLT MAX <float constant >= 10737>

The macro yields the largest finite representable value of type float.

FLT_MAX_10_EXP

#define FLT MAX 10 EXP <#if expression >= 37>

The macro yields the maximum integer X, such that 10”X is a finite representable value of type
float.

FLT_MAX_EXP

#define FLT_MAX EXP <#if expression>

The macro yields the maximum integer X, such that FLT RADIX™ (X - 1) is a finite
representable value of type float.

FLT_MIN

#define FLT MIN <float constant <= 10%(-37)>

The macro yields the smallest normalized, finite representable value of type float.

FLT_MIN_10_EXP

#define FLT_MIN_ 10 _EXP <#if expression <= -37>

The macro yields the minimum integer X, such that 10*X is a normalized, finite representable
value of type float.

FLT_MIN_EXP

#define FLT_MIN_ EXP <#if expression>

The macro yields the minimum integer X, such that FLT RADIX™ (X - 1) is a normalized,
finite representable value of type float.

FLT_RADIX

#define FLT_RADIX <#if expression >= 2>

The macro yields the radix of all floating point representations.

80-N2040-13 Rev. D 83

Qualcomm Hexagon C Library User Guide Header files

11.7.22 FLT_ROUNDS

#define FLT ROUNDS <integer rvalue>

The macro yields a value that describes the current rounding mode for floating point
operations. The target environment can change the rounding mode while the program
executes. How it does so, however, is not specified.

The values are:

m -1 if the mode is indeterminate

m 0 if rounding is toward zero

m 1 if rounding is to nearest representable value
m 2 if rounding is toward positive infinity

m 3 if rounding is toward negative infinity

An implementation can define additional values for this macro.

11.7.23 LDBL_DIG

#define LDBL_DIG <#if expression >= 10>

The macro yields the precision in decimal digits for type long double.

11.7.24 LDBL_EPSILON

#define LDBL EPSILON <long double constant <= 10*(-9)>

The macro yields the smallest X of type long double suchthat1.0 + X = 1.0.

11.7.25 LDBL_MANT_DIG

#define LDBL MANT DIG <#if expression>

The macro yields the number of mantissa digits, base FLT RADIX, for type long double.

11.7.26 LDBL_MAX

#define LDBL MAX <long double constant >= 10%37>

The macro yields the largest finite representable value of type 1long double.

80-N2040-13 Rev. D 84

Qualcomm Hexagon C Library User Guide Header files

11.7.27

11.7.28

11.7.29

11.7.30

11.7.31

LDBL_MAX_10_EXP

#define LDBL MAX 10 EXP <#if expression >= 37>

The macro yields the maximum integer X, such that 10”x is a finite representable value of type
long double.

LDBL_MAX_EXP

#define LDBL MAX EXP <#if expression>

The macro yields the maximum integer X, such that FLT RADIX™ (X - 1) is a finite
representable value of type long double.

LDBL_MIN

#define LDBL MIN <long double constant <= 10" (-37)>

The macro yields the smallest normalized, finite representable value of type long double.

LDBL_MIN_10_EXP

#define LDBL_MIN 10 EXP <#if expression <= -37>

The macro yields the minimum integer X, such that 10*X is a normalized, finite representable
value of type long double

LDBL_MIN_EXP

#define LDBL_MIN EXP <#if expression>

The macro yields the minimum integer X, such that FLT RADIX™ (X - 1) is a normalized,
finite representable value of type 1ong double.

80-N2040-13 Rev. D 85

Qualcomm Hexagon C Library User Guide Header files

11.8 <inttypes.h>
[Added with C99]

Include the standard header <inttypes.hs> to include the standard header <stdint . h> and to
define a type, several functions, and numerous macros for fine control over the conversion of
integers.

The definitions shown for the macros are merely representative—they can vary among
implementations.

/* TYPE DEFINITIONS */
typedef struct ({

intmax t quot, rem;
} imaxdiv_t;

/* FUNCTION DECLARATIONS */
intmax_ t imaxabs (intmax t 1i);
intmax_t abs (intmax t i); [C++ only]
imaxdiv_t imaxdiv (intmax t numer, intmax t denom) ;
imaxdiv_t div(intmax_t numer, intmax_t denom); [C++ only]
intmax_t strtoimax(const char *restrict s,
char **restrict endptr, int base);
uintmax t strtoumax(const char *restrict s,
char **restrict endptr, int base);
intmax t wcstoimax(const wchar t *restrict s,
wchar t **restrict endptr, int base);
uintmax t wcstoumax(const wchar t *restrict s,
wchar t **restrict endptr, int base);
/* PRINT FORMAT MACROS */

#define PRIdJS "hhd"
#define PRIA16 "hdn
#define PRIdA32 nlgan
#define PRId64 n11dan
#define PRIJFASTS "hhd"
#define PRIAFASTI16 "hd"
#define PRIJFAST32 "lan
#define PRIJFAST64 "1i4an
#define PRIJLEASTS "hhd"

#define PRIALEAST16 "hd"
#define PRIALEAST32 "1d"
#define PRIALEAST64 "1lld"

#define PRIAMAX n11dan
#define PRIJPTR n11idan
#define PRIiS8 "hhi"
#define PRIil6 "hi"
#define PRIi32 nlin
#define PRIi64 "114ivn
#define PRI1iFASTS "hhi"
#define PRI1FASTI16 "hi"
#define PRI1iFAST32 nlin
#define PRI1FAST64 "114in
#define PRIiLEASTS "hhi"

#define PRIiLEAST16 "hi"
#define PRIiLEAST32 "1i™"
#define PRIiLEAST64 "11i"

80-N2040-13 Rev. D 86

Qualcomm Hexagon C Library User Guide Header files
#define PRIiMAX 114
#define PRIiPTR 114
#define PRIOS8 "hho"
#define PRIO16 "ho"
#define PRIO32 "lo"
#define PRIo64 "llo"
#define PRIOFASTS "hho"
#define PRIOFASTI16 "ho"
#define PRIOFAST32 "lo"
#define PRIOFAST6G4 "1lo"
#define PRIOLEASTS "hho"
#define PRIOLEAST16 "ho"
#define PRIOLEAST32 "lo"
#define PRIOLEAST64 "llo"
#define PRIOMAX "llo"
#define PRIOPTR "llo"
#define PRIuS8 "hhu"
#define PRIulé6 "hu"
#define PRIu32 "lun
#define PRIu64 "1lu"
#define PRIUFASTS "hhu"
#define PRIUFASTI16 "hu"
#define PRIUFAST32 "lu"
#define PRIUFAST64 "11lu"
#define PRIULEASTS "hhu"
#define PRIULEAST16 "hu"
#define PRIULEAST32 "lu"
#define PRIuULEAST64 "11lu"
#define PRIuMAX "1lu"
#define PRIuPTR "1lu"
#define PRIXS8 "hhx"
#define PRIX16 "hx"
#define PRIX32 nlxn"
#define PRIX64 n11lx"
#define PRIXFASTS "hhx"
#define PRIXFASTI16 "hx"
#define PRIXFAST32 nlxn"
#define PRIXFAST64 n11x"
#define PRIXLEASTS "hhx"
#define PRIXLEAST16 "hx"
#define PRIXLEAST32 nlx"
#define PRIXLEAST64 "1lx"
#define PRIXMAX "1lx"
#define PRIXPTR "1lx"
#define PRIXS8 "hhX"
#define PRIX16 "hx"
#define PRIX32 X"
#define PRIX64 "1ixe
#define PRIXFASTS "hhx"
#define PRIXFASTI16 "hx"
#define PRIXFAST32 X"
#define PRIXFAST64 nlixe
#define PRIXLEASTS "hhx"
#define PRIXLEAST16 "Thx"
#define PRIXLEAST32 nixn
#define PRIXLEAST64 nlixe

80-N2040-13 Rev. D 87

Qualcomm Hexagon C Library User Guide Header files
#define PRIXMAX n1ixe
#define PRIXPTR "1ixe /* SCAN FORMAT MACROS */
#define SCNdS8 "hhd"
#define SCNd16 "hd"
#define SCNd32 n14gr
#define SCNdé64 "1l1ar
#define SCNJFASTS "hhd"
#define SCNAFASTI16 "hd"
#define SCNAFAST32 14
#define SCNAFAST64 114"
#define SCNALEASTS "hhd"
#define SCNALEAST16 "hd"
#define SCNALEAST32 "14"
#define SCNALEAST64 "114"
#define SCNdMAX "11lan
#define SCNAPTR "11lan
#define SCNi8 "hhin
#define SCNilé "hin
#define SCNi32 nlin
#define SCNi64 "114ivn
#define SCNiFASTS "hhin
#define SCNiFAST16 "hin
#define SCNiFAST32 14
#define SCNiFAST64 "114ivn
#define SCNiLEASTS "hhi"
#define SCNiLEAST16 "hin"
#define SCNiLEAST32 nlin
#define SCNiLEAST64 "114in
#define SCNiMAX "114ivn
#define SCNiPTR "114ivn
#define SCNo8 "hho"
#define SCNolé "ho"
#define SCNo32 "lo"
#define SCNoé64 "1lo"
#define SCNOFASTS "hho"
#define SCNoFAST16 "ho"
#define SCNoOFAST32 "lo"
#define SCNoOFAST64 "1lo"
#define SCNoLEASTS "hho"
#define SCNoOLEAST16 "ho"
#define SCNoOLEAST32 "lo"
#define SCNoOLEAST64 "l1lo"
#define SCNoOMAX "llo"
#define SCNoOPTR "llo"
#define SCNus8 "hhu"
#define SCNulé "hu"
#define SCNu32 "lu"
#define SCNué64 "11lu"
#define SCNuFASTS "hhu"
#define SCNuFAST16 "hu"
#define SCNuFAST32 "lu"
#define SCNuFAST64 "1lu"
#define SCNuLEASTS "hhu"
#define SCNuLEAST16 "hu"
#define SCNuLEAST32 "lu"
#define SCNuLEAST64 "1lu"

80-N2040-13 Rev. D 88

Qualcomm Hexagon C Library User Guide Header files

#define SCNuMAX "11lu"
#define SCNuPTR "11lu"
#define SCNx8 "hhx"
#define SCNx16 "hx"
#define SCNx32 "lx"
#define SCNx64 "1lx"
#define SCNxXFASTS "hhx"
#define SCNxXFASTI16 "hx"
#define SCNXFAST32 nlx"
#define SCNXFAST64 n11x"
#define SCNXLEASTS "hhx"

#define SCNXLEAST16 "hx"
#define SCNXLEAST32 "1x"
#define SCNxLEAST64 "11x"
#define SCNxMAX "1lx"
#define SCNxXPTR "1lx"

11.8.1 imaxabs, abs

intmax_t imaxabs (intmax t 1) ;
intmax_t abs (intmax t i); [C++ only]

The function returns the absolute value of i, |1i].

11.8.2 imaxdiv, div

imaxdiv_t imaxdiv (intmax_t numer, intmax t denom) ;
imaxdiv_t div(intmax_t numer, intmax_t denom); [C++ only]

The function divides numer by denom and returns both quotient and remainder in the structure
result x, if the quotient can be represented. The structure member x . quot is the algebraic
quotient truncated toward zero. The structure memberx . rem is the remainder, such that numer
== X.quot*denom + x.rem.

11.8.3 imaxdiv_t

typedef struct ({
intmax_t quot, rem;
} imaxdiv_t;

The type is the structure type returned by the function imaxdiv. The structure contains
members that represent the quotient (quot) and remainder (rem) of a signed integer division
with operands of type intmax_t. The members shown above can occur in either order.

80-N2040-13 Rev. D 89

Qualcomm Hexagon C Library User Guide Header files

11.8.4

11.8.5

11.8.6

11.8.7

PRId8, PRId16, PRId32, PRId64

#define PRIAS "hhd"
#define PRIA16 "ha"
#define PRIA32 nlgn
#define PRIdJ64 114"

The macros each expand to a string literal suitable for use as ad print conversion specifier, plus
any needed qualifiers, to convert values of the types int8 t, int1l6 t,int32 t,or inté64 t,
respectively.

The definitions shown here are merely representative.

PRIAFASTS8, PRIAFAST16, PRIdAFAST32, PRIDFAST64

#define PRIJFASTS "hhd"
#define PRIJFASTI16 "hda"
#define PRIJFAST32 "14an
#define PRIAFAST64 "114a"

The macros each expand to a string literal suitable for use as ad print conversion specifier, plus
any needed qualifiers, to convert values of the types int fast8 t, int fastlé6 t,
int fast32 t, or int fast64 t, respectively.

The definitions shown here are merely representative.

PRIALEASTS, PRIALEAST16, PRIALEAST32, PRIALEAST64

#define PRIALEASTS "hhd"
#define PRIALEAST16 "hd"
#define PRIALEAST32 "14"
#define PRIALEAST64 "114"

The macros each expand to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the types int least8 t, int leastl6 t,
int least32 t,or int least64_t, respectively.

The definitions shown here are merely representative.

PRIAMAX

#define PRIAMAX "1ldan

The macro expands to a string literal suitable for use as a d print conversion specifier, plus any
needed qualifiers, to convert values of the types intmax t.

The definition shown here is merely representative.

80-N2040-13 Rev. D 90

Qualcomm Hexagon C Library User Guide Header files

11.8.8 PRIAPTR

#define PRIAPTR "11ldan

The macro expands to a string literal suitable for use as a d print conversion specifier, plus any
needed qualifiers, to convert values of the type’s intptr_t.

The definition shown here is merely representative.

11.8.9 PRIi8, PRIi16, PRIi32, PRIi64

#define PRIiS8 "hhi"
#define PRIile "hin
#define PRIi32 nlin
#define PRIi64 "114iv

The macros each expand to a string literal suitable for use as an i print conversion specifier,
plus any needed qualifiers, to convert values of the types int8 t, int16 t, int32 t,or
int64_t, respectively.

The definitions shown here are merely representative.

11.8.10 PRIIFASTS, PRIIFAST16, PRIIFAST32, PRIIFAST64

#define PRIiFASTS "hhi"
#define PRIiFAST16 "hin
#define PRIiFAST32 14
#define PRIiFAST64 114

The macros each expand to a string literal suitable for use as an i print conversion specifier,
plus any needed qualifiers, to convert values of the types int fast8 t, int fastlé6 t,
int fast32 t, or int fast64 t, respectively.

The definitions shown here are merely representative.

11.8.11 PRIILEASTS, PRIILEAST16, PRIILEAST32, PRIILEAST64

#define PRIiLEASTS "hhin
#define PRI1LEAST16 "hi"
#define PRI1LEAST32 "1i"
#define PRIiILEAST64 "11i™

The macros each expand to a string literal suitable for use as an i print conversion specifier,
plus any needed qualifiers, to convert values of the types int least8 t, int leastl6 t,
int least32 t,or int least64_t, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 91

Qualcomm Hexagon C Library User Guide Header files

11.8.12

11.8.13

11.8.14

11.8.15

PRIIMAX

#define PRIiMAX "11iv

The macro expands to a string literal suitable for use as an i print conversion specifier, plus
any needed qualifiers, to convert values of the types intmax_t.

The definition shown here is merely representative.

PRIIPTR

#define PRIiPTR "114iv

The macro expands to a string literal suitable for use as an i print conversion specifier, plus
any needed qualifiers, to convert values of the type’s intptr t.

The definition shown here is merely representative.

PRIo8, PRIo16, PRIo32, PRIo64

#define PRIOS8 "hho"
#define PRIO1lé6 "ho™"
#define PRIO32 "lo"
#define PRIo64 "llo"

The macros each expand to a string literal suitable for use as an o print conversion specifier,
plus any needed qualifiers, to convert values of the types uint8 t,uintl6 t,uint32 t, or
uinté64_t, respectively.

The definitions shown here are merely representative.

PRIOFASTS8, PRIoFAST16, PRIoOFAST32, PRIoFAST64

#define PRIOFASTS "hho"
#define PRIOFASTI16 "ho"
#define PRIOFAST32 "lo"
#define PRIOFAST64 "llo"

The macros each expand to a string literal suitable for use as an o print conversion specifier,
plus any needed qualifiers, to convert values of the types uint fast8 t,uint fastlé t,
uint fast32 t,oruint fasté4 t,respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 92

Qualcomm Hexagon C Library User Guide Header files

11.8.16 PRIOLEASTS, PRIoLEAST16, PRIoLEAST32, PRIoLEAST64

#define PRIOLEASTS "hho™"
#define PRIOLEAST16 "ho"
#define PRIOLEAST32 "lo"
#define PRIOLEAST64 "llo"

The macros each expand to a string literal suitable for use as an o print conversion specifier,
plus any needed qualifiers, to convert values of the types uint least8 t,uint leastlé6 t,
uint least32 t,oruint least64 t, respectively.

The definitions shown here are merely representative.

11.8.17 PRIoMAX

#define PRIOMAX "1lo"

The macro expands to a string literal suitable for use as an o print conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintmax_t.

The definition shown here is merely representative.

11.8.18 PRIoPTR

#define PRIOPTR "1lo"

The macro expands to a string literal suitable for use as an o print conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintptr t.

The definition shown here is merely representative.

11.8.19 PRIu8, PRIu16, PRIu32, PRIu64

#define PRIuS8 "hhu"
#define PRIulé6 "hu"
#define PRIu32 "lu"
#define PRIu64 "1lu"

The macros each expand to a string literal suitable for use as a u print conversion specifier,
plus any needed qualifiers, to convert values of the types uint8 t,uintlé t,uint32 t, or
uinté4_t, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 93

Qualcomm Hexagon C Library User Guide Header files

11.8.20

11.8.21

11.8.22

11.8.23

PRIUFASTS, PRIUFAST16, PRIUFAST32, PRIUFAST64

#define PRIUFASTS "hhu"
#define PRIUFAST16 "hu"
#define PRIUFAST32 "lun
#define PRIUFAST64 "1lun

The macros each expand to a string literal suitable for use as a u print conversion specifier,
plus any needed qualifiers, to convert values of the types uint fast8 t,uint fastlé t,
uint fast32 t,oruint fasté4 t,respectively.

The definitions shown here are merely representative.

PRIULEASTS, PRIULEAST16, PRIULEAST32, PRIULEAST64

#define PRIULEASTS "hhu"
#define PRIULEAST16 "hu"
#define PRIULEAST32 "lu"
#define PRIULEAST64 "llu"

The macros each expand to a string literal suitable for use as a u print conversion specifier,
plus any needed qualifiers, to convert values of the types uint least8 t,uint leastl6 t,
uint least32 t,Oruint leasté64 t,respectively.

The definitions shown here are merely representative.

PRIuUMAX

#define PRIUMAX "11lu"

The macro expands to a string literal suitable for use as a u print conversion specifier, plus any
needed qualifiers, to convert values of the type’s uintmax t.

The definition shown here is merely representative.

PRIUPTR

#define PRIUPTR "1lu"

The macro expands to a string literal suitable for use as a u print conversion specifier, plus any
needed qualifiers, to convert values of the type’s uintptr t.

The definition shown here is merely representative.

80-N2040-13 Rev. D 94

Qualcomm Hexagon C Library User Guide Header files

11.8.24 PRIx8, PRIx16, PRIx32, PRIx64

#define PRIxS8 "hhx"
#define PRIXx16 Thx"
#define PRIx32 mlxn
#define PRIx64 "1lxn"

The macros each expand to a string literal suitable for use as an x print conversion specifier,
plus any needed qualifiers, to convert values of the types uint8 t,uintl6 t,uint32 t, or
uinté4_t, respectively.

The definitions shown here are merely representative.

11.8.25 PRIXFASTS, PRIXFAST16, PRIXFAST32, PRIXFAST64

#define PRIXFASTS "hhx"
#define PRIXFASTI16 Thx"
#define PRIXFAST32 "lx"
#define PRIXFAST64 "1lxn

The macros each expand to a string literal suitable for use as an x print conversion specifier,
plus any needed qualifiers, to convert values of the types uint fast8 t,uint fastlé t,
uint fast32 t,oruint fasté4 t, respectively.

The definitions shown here are merely representative.

11.8.26 PRIXLEASTS, PRIXLEAST16, PRIXLEAST32, PRIXLEAST64

#define PRIXLEASTS "hhx"
#define PRIXLEAST16 "hx"
#define PRIXLEAST32 "1x"
#define PRIXLEAST64 "11lx"

The macros each expand to a string literal suitable for use as an x print conversion specifier,
plus any needed qualifiers, to convert values of the types uint least8 t,uint leastlé t,
uint least32 t,oruint least64 t, respectively.

The definitions shown here are merely representative.

11.8.27 PRIXMAX

#define PRIXMAX "1lx"

The macro expands to a string literal suitable for use as an x print conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintmax_t.

The definition shown here is merely representative.

80-N2040-13 Rev. D 95

Qualcomm Hexagon C Library User Guide Header files

11.8.28 PRIXPTR

#define PRIXPTR n11lx"

The macro expands to a string literal suitable for use as an x print conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintptr t.

The definition shown here is merely representative.

11.8.29 PRIX8, PRIX16, PRIX32, PRIX64

#define PRIXS8 "hhx"
#define PRIX16 Thx"
#define PRIX32 nlx"
#define PRIX64 "1lxn

The macros each expand to a string literal suitable for use as an x print conversion specifier,
plus any needed qualifiers, to convert values of the types uint8 t,uintlé t,uint32 t, or
uinté4_t, respectively.

The definitions shown here are merely representative.

11.8.30 PRIXFASTS, PRIXFAST16, PRIXFAST32, PRIXFAST64

#define PRIXFASTS "hhx"
#define PRIXFAST16 "hx"
#define PRIXFAST32 n1x"
#define PRIXFAST64 "1lx"

The macros each expand to a string literal suitable for use as an x print conversion specifier,
plus any needed qualifiers, to convert values of the types uint fast8 t,uint fastleé t,
uint fast32 t,oruint fasté4 t, respectively.

The definitions shown here are merely representative.

11.8.31 PRIXLEASTS, PRIXLEAST16, PRIXLEAST32, PRIXLEAST64

#define PRIXLEASTS "hhx"
#define PRIXLEAST16 "hx"
#define PRIXLEAST32 "lx"
#define PRIXLEAST64 "1l1lx"

The macros each expand to a string literal suitable for use as an x print conversion specifier,
plus any needed qualifiers, to convert values of the types uint least8 t,uint leastl6 t,
uint least32 t,oruint least64 t, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 96

Qualcomm Hexagon C Library User Guide Header files

11.8.32

11.8.33

11.8.34

11.8.35

PRIXMAX

#define PRIXMAX "1lx"

The macro expands to a string literal suitable for use as an x print conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintmax_t.

The definition shown here is merely representative.

PRIXPTR

#define PRIXPTR "1lx"

The macro expands to a string literal suitable for use as an x print conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintptr t.

The definition shown here is merely representative.

SCNd8, SCNd16, SCNd32, SCNd64

#define SCNd8 "hha"
#define SCNd1leé "ha"
#define SCNd32 n1gn
#define SCNd64 114"

The macros each expand to a string literal suitable for use as a d scan conversion specifier,
plus any needed qualifiers, to convert values of the types int8 t, int16 t,int32 t, or
int64 t, respectively.

The definitions shown here are merely representative.

SCNdFAST8, SCNdFAST16, SCNdFAST32, SCNdFAST64

#define SCNJFASTS "hhd"
#define SCNJFAST16 "hd"
#define SCNJFAST32 "14an
#define SCNJFAST64 "114a"

The macros each expand to a string literal suitable for use as a d scan conversion specifier,
plus any needed qualifiers, to convert values of the types int fast8 t, int fastlé t,
int_ fast32_t, or int fast64 t, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 97

Qualcomm Hexagon C Library User Guide Header files

11.8.36

11.8.37

11.8.38

11.8.39

SCNJLEASTS8, SCNALEAST16, SCNALEAST32, SCNALEASTG64

#define SCNALEASTS "hhd"
#define SCNALEAST16 "hd"
#define SCNALEAST32 "14"
#define SCNALEAST64 "114"

The macros each expand to a string literal suitable for use as a d scan conversion specifier,
plus any needed qualifiers, to convert values of the types int least8 t, int leastl6 t,
int least32 t,or int least64_t, respectively.

The definitions shown here are merely representative.

SCNdMAX

#define SCNdMAX "1ldan

The macro expands to a string literal suitable for use as a d scan conversion specifier, plus any
needed qualifiers, to convert values of the types intmax_t.

The definition shown here is merely representative.

SCNdPTR

#define SCNAPTR "11ldan

The macro expands to a string literal suitable for use as a d scan conversion specifier, plus any
needed qualifiers, to convert values of the type’s intptr_t.

The definition shown here is merely representative.

SCNi8, SCNi16, SCNi32, SCNi64

#define SCNi8 "hhin"
#define SCNile "hin
#define SCNi32 nlin
#define SCNié64 "114inm

The macros each expand to a string literal suitable for use as an i scan conversion specifier,
plus any needed qualifiers, to convert values of the types int8 t, int16 t, int32 t,or
int64_t, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 98

Qualcomm Hexagon C Library User Guide Header files

11.8.40 SCNiFASTS8, SCNiFAST16, SCNiFAST32, SCNiFAST64

#define SCNiFASTS "hhi"
#define SCNiFAST16 "hin
#define SCNiFAST32 14
#define SCNiFAST64 114

The macros each expand to a string literal suitable for use as an i scan conversion specifier,
plus any needed qualifiers, to convert values of the types int fast8 t, int fastlé6 t,
int fast32 t,or int fasté4_t, respectively.

The definitions shown here are merely representative.

11.8.41 SCNILEASTS8, SCNILEAST16, SCNIiLEAST32, SCNIiLEAST64

#define SCNiLEASTS "hhi"
#define SCNiLEAST16 "hi"
#define SCNiLEAST32 "1i"
#define SCNiLEAST64 "11i™

The macros each expand to a string literal suitable for use as an i scan conversion specifier,
plus any needed qualifiers, to convert values of the types int least8 t, int leastl6 t,
int least32 t,or int least64_t, respectively.

The definitions shown here are merely representative.

11.8.42 SCNiIMAX

#define SCNiMAX "11iv

The macro expands to a string literal suitable for use as an i scan conversion specifier, plus
any needed qualifiers, to convert values of the types intmax_t.

The definition shown here is merely representative.

11.8.43 SCNIPTR

#define SCNiPTR "114iv

The macro expands to a string literal suitable for use as an i scan conversion specifier, plus
any needed qualifiers, to convert values of the type’s intptr_ t.

The definition shown here is merely representative.

80-N2040-13 Rev. D 99

Qualcomm Hexagon C Library User Guide Header files

11.8.44 SCNo8, SCNo16, SCNo32, SCNo64

#define SCNo8 "hho"
#define SCNole "ho™"
#define SCNo32 "lo"
#define SCNo64 "llo"

The macros each expand to a string literal suitable for use as an o scan conversion specifier,
plus any needed qualifiers, to convert values of the types uint8 t,uintl6 t,uint32 t, or
uinté4_t, respectively.

The definitions shown here are merely representative.

11.8.45 SCNoOFASTS8, SCNoFAST16, SCNoFAST32, SCNoFAST64

#define SCNOFASTS "hho"
#define SCNoOFASTI16 "ho"
#define SCNoOFAST32 "lo"
#define SCNoFAST64 "llo"

The macros each expand to a string literal suitable for use as an o scan conversion specifier,
plus any needed qualifiers, to convert values of the types uint fast8 t,uint fastlé t,
uint fast32 t,oruint fasté4 t, respectively.

The definitions shown here are merely representative.

11.8.46 SCNoOLEAST8, SCNoLEAST16, SCNoLEAST32, SCNoLEAST64

#define SCNOLEASTS "hho"
#define SCNOLEAST16 "ho"
#define SCNOLEAST32 "lo"
#define SCNOLEAST64 "llo"

The macros each expand to a string literal suitable for use as an o scan conversion specifier,
plus any needed qualifiers, to convert values of the types uint least8 t,uint leastlé t,
uint least32 t,oruint least64 t, respectively.

The definitions shown here are merely representative.

11.8.47 SCNoMAX

#define SCNoMAX "l1lo"

The macro expands to a string literal suitable for use as an o scan conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintmax_t.

The definition shown here is merely representative.

80-N2040-13 Rev. D 100

Qualcomm Hexagon C Library User Guide Header files

11.8.48

11.8.49

11.8.50

11.8.51

SCNoPTR

#define SCNoPTR "1lo"

The macro expands to a string literal suitable for use as an o scan conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintptr t.

The definition shown here is merely representative.

SCNu8, SCNu16, SCNu32, SCNu64

#define SCNus8 "hhu"
#define SCNulé "hu"
#define SCNu32 "lu"
#define SCNué4 "1lu"

The macros each expand to a string literal suitable for use as a u scan conversion specifier,
plus any needed qualifiers, to convert values of the types uint8 t,uintl6 t,uint32 t, or
uinté4_t, respectively.

The definitions shown here are merely representative.

SCNuFAST8, SCNuFAST16, SCNuFAST32, SCNuFAST64

#define SCNuFASTS8 "hhu"
#define SCNuFAST16 "hu"
#define SCNuFAST32 "lun
#define SCNuFAST64 "1lun

The macros each expand to a string literal suitable for use as a u scan conversion specifier,
plus any needed qualifiers, to convert values of the types uint fast8 t,uint fastlé t,
uint fast32 t,oruint fasté4 t, respectively.

The definitions shown here are merely representative.

SCNuLEAST8, SCNuLEAST16, SCNULEAST32, SCNULEAST64

#define SCNuLEASTS "hhu"
#define SCNuLEAST16 "hu"
#define SCNuLEAST32 "lu"
#define SCNuLEAST64 "llu"

The macros each expand to a string literal suitable for use as a u scan conversion specifier,
plus any needed qualifiers, to convert values of the types uint least8 t,uint leastl6 t,
uint least32 t,oruint least64 t, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 101

Qualcomm Hexagon C Library User Guide Header files

11.8.52

11.8.53

11.8.54

11.8.55

SCNuMAX

#define SCNuMAX "11lu"

The macro expands to a string literal suitable for use as a u scan conversion specifier, plus any
needed qualifiers, to convert values of the type’s uintmax t.

The definition shown here is merely representative.

SCNuPTR

#define SCNuPTR "1lu"

The macro expands to a string literal suitable for use as a u scan conversion specifier, plus any
needed qualifiers, to convert values of the type’s uintptr t.

The definition shown here is merely representative.

SCNx8, SCNx16, SCNx32, SCNx64

#define SCNx8 "hhx"
#define SCNx16 Thx"
#define SCNx32 nlxn
#define SCNx64 "1lxn"

The macros each expand to a string literal suitable for use as an x scan conversion specifier,
plus any needed qualifiers, to convert values of the types uint8 t,uintl6 t,uint32 t, or
uinté64_t, respectively.

The definitions shown here are merely representative.

SCNxFAST8, SCNxFAST16, SCNxFAST32, SCNxFAST64

#define SCNxFASTS8 "hhx"
#define SCNxFAST16 Thx"
#define SCNxXFAST32 "lx"
#define SCNxFAST64 "1lxn

The macros each expand to a string literal suitable for use as an x scan conversion specifier,
plus any needed qualifiers, to convert values of the types uint fast8 t,uint fastlé t,
uint fast32 t,oruint fasté4 t,respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 102

Qualcomm Hexagon C Library User Guide Header files

11.8.56 SCNxLEASTS8, SCNXLEAST16, SCNXLEAST32, SCNXLEAST64

#define SCNxXLEASTS "hhx"
#define SCNXLEAST16 "hx"
#define SCNxXLEAST32 "1x"
#define SCNXLEAST64 "11lx"

The macros each expand to a string literal suitable for use as an x scan conversion specifier,
plus any needed qualifiers, to convert values of the types uint least8 t,uint leastlé t,
uint least32 t,oruint least64 t, respectively.

The definitions shown here are merely representative.

11.8.57 SCNxMAX

#define SCNxMAX "1lx"

The macro expands to a string literal suitable for use as an x scan conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintmax_t.

The definition shown here is merely representative.

11.8.58 SCNxPTR

#define SCNXPTR n11lx"

The macro expands to a string literal suitable for use as an x scan conversion specifier, plus
any needed qualifiers, to convert values of the type’s uintptr t.

The definition shown here is merely representative.

11.8.59 strtoimax

intmax_t strtoimax(const char *restrict s, char **restrict endptr,
int base) ;

The function converts the initial characters of string s to an equivalent value x of type
intmax_t. If endptr is not a NULL pointer, it stores a pointer to the unconverted remainder
of the string in *endptr. The function then returns x. strtoimax converts strings exactly as
does strtol.

If string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If the
equivalent value is too large to represent as type intmax_t, strtoimax stores the value of
ERANGE in errno and returns either INTMAX MAX, if x is positive or INTMAX MIN if X is
negative.

80-N2040-13 Rev. D 103

Qualcomm Hexagon C Library User Guide Header files

11.8.60 strtoumax

uintmax t strtoumax(const char *restrict s,
char **restrict endptr, int base);

The function converts the initial characters of string s to an equivalent value x of type
uintmax_t.If endptr is not a NULL pointer, it stores a pointer to the unconverted remainder
of the string in *endptr. The function then returns x. strtoumax converts strings exactly as
does strtoul.

If string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If the
equivalent value is too large to represent as type uintmax_t, strtoumax stores the value of
ERANGE in errno and returns UINTMAX MAX.

11.8.61 wcstoimax

intmax_ t wcstimax(const wchar t *restrict s,
wchar t **restrict endptr, int base);

The function converts the initial wide characters of the wide strings to an equivalent value x of
type intmax_t. If endptr is not a NULL pointer, the function stores a pointer to the
unconverted remainder of the wide string in *endptr. The function then returns x.

The initial wide characters of the wide string s must match the same pattern as recognized by
the function strtol, with the same base argument, where each wide character wc is converted
as if by calling wetob (we)).

If the wide string s matches this pattern, westoimax converts strings exactly as does strtol,
with the same base argument, for the converted sequence. If the wide string s does not match a
valid pattern, the value stored in *endptr is s, and x is zero.

If the equivalent value is too large in magnitude to represent as type intmax_t, westoimax
stores the value of ERANGE in errno and returns either INTMAX MAX if x is positive or
INTMAX MIN if x is negative.

11.8.62 wcstoumax

uintmax t wcstoumax(const wchar t *restrict s,
wchar t **restrict endptr, int base);

The function converts the initial wide characters of the wide strings to an equivalent value x of
type uintmax_t. If endptr is not a NULL pointer, the function stores a pointer to the
unconverted remainder of the wide string in *endptr. The function then returns x.

The initial wide characters of the wide string s must match the same pattern as recognized by
the function strtol, with the same base argument, where each wide character wc is converted
as if by calling wetob (we)).

80-N2040-13 Rev. D 104

Qualcomm Hexagon C Library User Guide Header files

If the wide string s matches this pattern, wcstoumax converts strings exactly as does strtol,
with the same base argument, for the converted sequence. If the wide string s does not match a
valid pattern, the value stored in *endptr is s, and x is zero. If the equivalent value is too
large to represent as type uintmax_t,wcstoimax stores the value of ERANGE in errno and
returns UINTMAX MAX.

80-N2040-13 Rev. D 105

Qualcomm Hexagon C Library User Guide Header files

11.9 <iohw.h>

[Added with TR18015 and TR18037]

Include the added header <iohw.h> so that you can write low-level I/O hardware drivers in C
that are easier to port to different architectures.

The use of this header does not require the additions to the C language mandated by TR18037,
which include fixed-point arithmetic and named address spaces.

/* TYPES */ typedef i-type ioindex t;
typedef i-type ioreg;

/* FUNCTIONS (all masked by macros) */ unsigned int iord(ioreg
dev) ;
unsigned long iordl (ioreg dev) ;
unsigned int iordbuf (ioreg dev, ioindex t idx);
unsigned long iordbufl (ioreg dev, ioindex t idx);
void iowr (ioreg dev, unsigned int wval) ;
void iowrl (ioreg dev, unsigned int val) ;
void iowrbuf (ioreg dev, ioindex t idx, unsigned int val);
void iowrbufl (ioreg dev, ioindex t idx, unsigned int val);
void ioor (ioreg dev, unsigned int wval) ;
void ioorl (ioreg dev, unsigned int wval);
void ioorbuf (ioreg dev, ioindex t idx, unsigned int val);
void ioorbufl (ioreg dev, ioindex t idx, unsigned int val) ;
void iocand(ioreg dev, unsigned int wval) ;
void iocandl (ioreg dev, unsigned int wval);
void ioandbuf (ioreg dev, ioindex t idx, unsigned int val) ;
void ioandbufl (ioreg dev, ioindex t idx, unsigned int wval);
void ioxor (ioreg dev, unsigned int val) ;
void ioxorl (ioreg dev, unsigned int val);
void ioxorbuf (ioreg dev, ioindex t idx, unsigned int val);
void ioxorbufl (ioreg dev, ioindex t idx, unsigned int wval);
void iogroup acquire (int group) ;
void iogroup release (int group) ;
void iogroup map (int group, int direct);

The <iohw.h> header defines two types and a number of functions, all of which are typically
masked as macros. You should view this header as a prototype for defining the atomic
operations needed to express a low-level I/O hardware driver (thus the root name iohw) that is
intended to be reasonably portable C. The facilities in this header are structured around a few
basic concepts:

m The type ioreg describes the space of all /O addresses. These can be port addresses, for
processors with port I/O instructions, or memory addresses, for processors with memory-
mapped I/O hardware. In a simpler implementation, the actual argument corresponding to
the parameter name dev can also be used to construct the name of a function to call.

m The type ioindex_t describes an integer type that can be used to index into a hardware
buffer, an array of I/O addresses.

80-N2040-13 Rev. D 106

Qualcomm Hexagon C Library User Guide Header files

m An argument named group describes the space of all hardware groups, which might be
meaningful on an architecture that supports switching among groups of similar I/O
addresses by changing a base address dynamically. In a simpler implementation, the actual
argument corresponding to the parameter name dev can also be used to construct the name
of a function to call.

The function names are thus suggestive of specific I/O operations, though they have no
required semantics:

m iord reads a port and returns as the value of the function.
m iowr writes val to a port.

m ioor ORs val into a port (bitwise inclusive OR).

m ioand ANDs val into a port (bitwise AND).

m ioxor XORs val into a port (bitwise exclusive OR).

Moreover:
m The suffix buf performs the operation with the element idx of a buffer.

m The suffix 1 (lowercase L) takes the type of the port as unsigned long instead of
unsigned int.

Similarly, functions whose name begins with iogroup operate on hardware groups:
m The suffix acquire establishes group as the active hardware group.
m The suffix release disestablished group as the active hardware group.

m The suffix map maps the dynamic group into the actual hardware group direct.

In this implementation, all functions are masked by macros that follow the pattern:

#define TIOHW CAT(x, y) x##_ ##y /* expand arguments and paste */
#define iordbuf (dev, idx) _IOHW CAT(dev, brd) (idx)

Thus, the first argument (after macro expansion) is pasted onto a suitable suffix to produce the
name of the actual function to call. So you can write code such as:

#define KBD kbd /* root name of keyboard functions */
#define KBD_ STATUS O /* first of two adjacent ports */
#define KBD_ DATA 1 /* second of two adjacent ports */
#define KBD_ DONE 0x80 /* DONE status bit */

extern unsigned int kbd brd(ioindex_ t idx); /* actual driver */

unsigned int getkbd ()
{ /* read keyboard when ready */

while ((iordbuf (KBD, KBD_STATUS) & KBD_DONE) == 0)
; /* wait until character is present */
return (iordbuf (KBD, KBD DATA)); /* read char and clear DONE */

All actual driver calls will be to the function (or macro) kbd brd.

80-N2040-13 Rev. D 107

Qualcomm Hexagon C Library User Guide

Header files

11.10

11.10.1

11.10.2

11.10.3

11.10.4

11.10.5

<is0646.h>

[Added with Amendment 1]

Include the standard header <iso646 . h> to provide readable alternatives to certain operators

or punctuators. This header is available even in a freestanding implementation.

#define and && [Keyword in C++]
#define and _eq &= [Keyword in C++]
#define bitand & [Keyword in C++]
#define bitor | [Keywordin C++]
#define compl ~ [Keyword in C++]
#define not ! [Keyword in C++]

#define not_eq != [Keyword in C++]
#define or || [Keyword in C++]
#define or eq |= [Keywordin C++]

#define xor * [Keyword in C++]
#define xor eqg “= [Keyword in C++]

and
#define and && [Keyword in C++]

The macro yields the operator &&.

and_eq
#define and eqg &= [Keyword in C++]

The macro yields the operator &-=.

bitand
#define bitand & [Keyword in C++]

The macro yields the operator &.

bitor
#define bitor | [Keywordin C++]

The macro yields the operator |.

compl
#define compl ~ [Keyword in C++]

The macro yields the operator ~.

80-N2040-13 Rev. D

108

Qualcomm Hexagon C Library User Guide

Header files

11.10.6 not

#define not ! [Keyword in C++]

The macro yields the operator !.

11.10.7 not_eq

#define not _eqg != [Keyword in C++]

The macro yields the operator ! =.

11.10.8 or

#define or || [Keyword in C++]

The macro yields the operator | |.

11.10.9 or_eq

#define or eq |= [Keywordin C++]

The macro yields the operator | =.

11.10.10xor

#define xor * [Keyword in C++]

The macro yields the operator *.

11.10.11xor_eq

#define xor eq “= [Keyword in C++]

The macro yields the operator *=.

80-N2040-13 Rev. D

109

Qualcomm Hexagon C Library User Guide Header files

11.11

<limits.h>

Include the standard header <1imits.hs> to determine various properties of the integer type
representations. This header is available even in a freestanding implementation.

You can test the values of all these macros in an if directive. (The macros are #if

expressions.)

#define CHAR BIT <#if expression >= 8>

#define CHAR MAX <#if expression >= 127>

#define CHAR MIN <#if expression <= 0>

#define SCHAR MAX <#if expression >= 127>

#define SCHAR MIN <#if expression <= -127>

#define UCHAR MAX <#if expression >= 255>

#define MB LEN MAX <#if expression >= 1>

#define SHRT MAX <#if expression >= 32,767>

#define SHRT MIN <#if expression <= -32,767>

#define USHRT MAX <#if expression >= 65,535>

#define INT MAX <#if expression >= 32,767>

#define INT MIN <#if expression <= -32,767>

#define UINT MAX <#if expression >= 65,535>

#define LONG_MAX <#if expression >= 2,147,483,647>

#define LONG _MIN <#if expression <= -2,147,483,647>

#define ULONG MAX <#if expression >= 4,294,967,295>

#define LLONG MAX <#if expression >= 9,223,372,036,854,775,807> [Added
with C99]

#define LLONG MIN <#if expression <= -9,223,372,036,854,775,807>
[Added with C99]

#define ULLONG MAX <#if expression >= 18,446,744,073,709,551,615>

[Added with C99]

11.11.1 CHAR_BIT

#define

CHAR _BIT <#if expression >= 8>

The macro yields the maximum value for the number of bits used to represent an object of type

char.

11.11.2 CHAR_MAX

#define

CHAR_MAX <#if expression >= 127>

The macro yields the maximum value for type char. Its value is:

m SCHAR MAX if char represents negative values

m UCHAR MAX otherwise

80-N2040-13 Rev. D

110

Qualcomm Hexagon C Library User Guide Header files

11.11.3

11.11.4

11.11.5

11.11.6

11.11.7

11.11.8

11.11.9

CHAR_MIN

#define CHAR MIN <#if expression <= 0>

The macro yields the minimum value for type char. Its value is:
B SCHAR MIN if char represents negative values

m Zero otherwise

INT_MAX

#define INT MAX <#if expression >= 32,767>

The macro yields the maximum value for type int.

INT_MIN

#define INT MIN <#if expression <= -32,767>

The macro yields the minimum value for type int.

LLONG_MAX

#define LLONG MAX <#if expression >= 9,223,372,036,854,775,807> [Added
with C99]

The macro yields the maximum value for type long long.

LLONG_MIN

#define LLONG MIN <#if expression <= -9,223,372,036,854,775,807>
[Added with C99]

The macro yields the minimum value for type long long.

LONG_MAX

#define LONG MAX <#if expression >= 2,147,483,647>

The macro yields the maximum value for type long.

LONG_MIN

#define LONG MIN <#if expression <= -2,147,483,647>

The macro yields the minimum value for type long.

80-N2040-13 Rev. D 111

Qualcomm Hexagon C Library User Guide Header files

11.11.10MB_LEN_MAX

#define MB LEN MAX <#if expression >= 1>

The macro yields the maximum number of characters that constitute a multibyte character in
any supported locale. Its value is > MB_CUR_MAX.

11.11.11 SCHAR_MAX

#define SCHAR MAX <#if expression >= 127>

The macro yields the maximum value for type signed char.

11.11.12SCHAR_MIN

#define SCHAR MIN <#if expression <= -127>

The macro yields the minimum value for type signed char.

11.11.13SHRT_MAX

#define SHRT MAX <#if expression >= 32,767>

The macro yields the maximum value for type short.

11.11.14SHRT_MIN

#define SHRT MIN <#if expression <= -32,767>

The macro yields the minimum value for type short.

11.11.15UCHAR_MAX

#define UCHAR MAX <#if expression >= 255>

The macro yields the maximum value for type unsigned char.

11.11.16 UINT_MAX

#define UINT MAX <#if expression >= 65,535>

The macro yields the maximum value for type unsigned int.

80-N2040-13 Rev. D 112

Qualcomm Hexagon C Library User Guide Header files

11.11.17ULLONG_MAX

#define ULLONG MAX <#if expression >= 18,446,744,073,709,551,615>
[Added with C99]

The macro yields the maximum value for type unsigned long long.

11.11.18 ULONG_MAX

#define ULONG MAX <#if expression >= 4,294,967,295>

The macro yields the maximum value for type unsigned long.

11.11.19USHRT_MAX

#define USHRT MAX <#if expression >= 65,535>

The macro yields the maximum value for type unsigned short.

80-N2040-13 Rev. D 113

Qualcomm Hexagon C Library User Guide Header files

1112 <locale.h>

Include the standard header <1ocale.h> to alter or access properties of the current locale—a
collection of culture-specific information. An implementation can define additional macros in
this standard header with names that begin with L.C . You can use any of these macro names as
the locale category argument (which selects a cohesive subset of a locale) to setlocale.

#define LC ALL <integer constant expression>
#define LC COLLATE <integer constant expression>
#define LC CTYPE <integer constant expression>
#define LC MONETARY <integer constant expression>
#define LC_NUMERIC <integer constant expressions>
#define LC_TIME <integer constant expressions>
#define NULL <either 0, 0L, or (void *)0> [0in C++]

struct lconv;

struct lconv *localeconv (void) ;
char *setlocale(int category, const char *locname) ;

11.12.1 LC_ALL

#define LC_ALL <integer constant expressions>

The macro yields the locale category argument value that affects all locale categories.

11.12.2 LC_COLLATE

#define LC COLLATE <integer constant expression>

The macro yields the locale category argument value that affects the collation functions
strcoll andstrxfrm.

11.12.3 LC_CTYPE

#define LC CTYPE <integer constant expression>

The macro yields the locale category argument value that affects character classification
functions, wide-character classification functions, and various multibyte conversion functions.

11.12.4 LC_MONETARY

#define LC MONETARY <integer constant expression>

The macro yields the locale category argument value that affects monetary information
returned by localeconv.

80-N2040-13 Rev. D 114

Qualcomm Hexagon C Library User Guide

Header files

11.12.5 LC_NUMERIC

#define LC NUMERIC <integer constant expression>

11.12.6

11.12.7

The macro yields the locale category argument value that affects numeric information returned

by localeconv, including the decimal point used by numeric conversion, read, and write

functions.

LC_TIME

#define LC TIME <integer constant expression>

The macro yields the locale category argument value that affects the time conversion function

strftime.

lconv

struct lconv {
ELEMENT

char
char
char

char
char
char

char
char

char
char
char
char
char
char
char
char

char
char
char
char
char
char
char
char

*decimal point;
*grouping;
*thousands_ sep;

*mon_decimal_ point;
*mon_grouping;
*mon_thousands_sep;

*negative sign;
*positive sign;

*currency_ symbol;
frac digits;
n_cs_precedes;
n_sep by space;
n_sign posn;
p_cs_precedes;
p_sep_ by space;
p_sign_posn;

*int curr symbol;
int frac digits;
int_n cs_precedes;
int n sep by space;
int n sign posn;
int p cs_precedes;
int p sep by space;
int_p sign posn;

"C" LOCALE

CHAR_MAX
CHAR_MAX
CHAR_MAX
CHAR_MAX
CHAR_MAX
CHAR_MAX
CHAR_MAX

CHAR_MAX
CHAR_MAX
CHAR_MAX
CHAR_MAX
CHAR_MAX
CHAR_MAX
CHAR_MAX

LOCALE CATEGORY

LC NUMERIC
LC NUMERIC
LC NUMERIC

LC MONETARY
LC MONETARY
LC MONETARY

LC MONETARY
LC MONETARY

LC MONETARY
LC MONETARY
LC MONETARY
LC MONETARY
LC MONETARY
LC MONETARY
LC MONETARY
LC MONETARY

LC MONETARY
LC MONETARY

LC MONETARY [Added with C99]
LC MONETARY [Added with C99]
LC MONETARY [Added with C99]
LC MONETARY [Added with C99]
LC MONETARY [Added with C99]
LC MONETARY [Added with C99]

80-N2040-13 Rev. D

115

Qualcomm Hexagon C Library User Guide Header files

The 1conv structure contains members that describe how to format numeric and monetary
values. Functions in the Standard C library use only the decimal point field. The
information is otherwise advisory:

m Members of type pointer to char all designate C strings.
m Members of type char have non-negative values.

m A char value of CHAR MaX indicates that a meaningful value is not available in the current
locale.

The members shown above can occur in arbitrary order and can be interspersed with
additional members. The comment following each member shows its value for the "C" locale,
the locale in effect at program startup, followed by the locale category that can affect its value.

A description of each member follows, with an example in parentheses that would be suitable
for a USA locale.

m currency symbol — The local currency symbol ("$")
m decimal point — The decimal point for non-monetary values (" . ")

m grouping — The sizes of digit groups for non-monetary values. An empty string calls for
no grouping. Otherwise, successive elements of the string describe groups going away
from the decimal point:

o An element value of zero (the terminating NULL character) calls for the previous
element value to be repeated indefinitely.

o An element value of CHAR MAX ends any further grouping (and hence ends the string).

Thus, the array {3, 2, CHAR Max} calls for a group of three digits, then two, and then
whatever remains, as in 9876, 54,321, while "\3" calls for repeated groups of three digits, as
in 987,654,321, ("\3")

B int curr_ symbol — The international currency symbol specified by ISO 4217 ("USD")
m mon decimal point — The decimal point for monetary values (".")

m mon grouping — The sizes of digit groups for monetary values. Successive elements of
the string describe groups going away from the decimal point. The encoding is the same as
for grouping.

m mon thousands sep — The separator for digit groups to the left of the decimal point for
monetary values (",")

m negative sign — The negative sign for monetary values ("-")
m positive sign — The positive sign for monetary values ("+")

m thousands_sep — The separator for digit groups to the left of the decimal point for non-
monetary values (",")

m frac_digits — The number of digits to display to the right of the decimal point for monetary
values

m int frac digits — The number of digits to display to the right of the decimal point for
international monetary values

80-N2040-13 Rev. D 116

Qualcomm Hexagon C Library User Guide Header files

B int n cs precedes [Added with C99] — Whether the international currency symbol
precedes or follows the value for negative monetary values:

o A value of 0 indicates that the symbol follows the value.
o A value of 1 indicates that the symbol precedes the value.

B int n sep by space [Added with C99] — Whether the international currency symbol is
separated by a space (defined by int_curr symbol[3]) or by no space from the value for
negative monetary values:

o A value of 0 indicates that no space separates symbol from value.

o A value of 1 indicates that a space separates symbol, or adjacent symbol and sign,
from value.

o A value of 2 indicates that a space separates symbol from adjacent sign, otherwise a
space separates non-adjacent sign from value.

B int n sign posn [Added with C99] — The format for negative international monetary
values:

o A value of 0 indicates that parentheses surround the value and the currency symbol.

o A value of 1 indicates that the negative sign precedes the value and the currency
symbol.

o A value of 2 indicates that the negative sign follows the value and the
currency symbol.

o A value of 3 indicates that the negative sign immediately precedes the currency
symbol.

o A value of 4 indicates that the negative sign immediately follows the
currency symbol.

B int p cs precedes [Added with C99] — Whether the international currency symbol
precedes or follows the value for positive monetary values:

o A value of 0 indicates that the symbol follows the value.
o A value of 1 indicates that the symbol precedes the value.

B int p sep by space [Added with C99] — Whether the international currency symbol is
separated by a space (defined by int_curr_symbol[3]) or by no space from the value for
positive monetary values:

o A value of 0 indicates that no space separates symbol from value.

o A value of 1 indicates that a space separates symbol, or adjacent symbol and sign,
from value.

o A value of 2 indicates that a space separates symbol from adjacent sign, otherwise a
space separates non-adjacent sign from value.

80-N2040-13 Rev. D 117

Qualcomm Hexagon C Library User Guide Header files

B int p sign posn [Added with C99] — The format for positive international monetary
values:

o A value of 0 indicates that parentheses surround the value and the currency symbol.

o A value of 1 indicates that the positive sign precedes the value and the currency
symbol.

o A value of 2 indicates that the positive sign follows the value and the currency
symbol.

o A value of 3 indicates that the positive sign immediately precedes the currency
symbol.

o A value of 4 indicates that the positive sign immediately follows the currency symbol.

m n _cs_precedes — Whether the currency symbol precedes or follows the value for
negative monetary values:

o A value of 0 indicates that the symbol follows the value.
o A value of 1 indicates that the symbol precedes the value.

m n _sep by space — Whether the currency symbol is separated by a space or by no space
from the value for negative monetary values:

o A value of 0 indicates that no space separates symbol from value.

o A value of 1 indicates that a space separates symbol, or adjacent symbol and sign,
from value.

o [Added with C99] A value of 2 indicates that a space separates symbol from adjacent
sign, otherwise a space separates non-adjacent sign from value.

m n_sign posn— The format for negative monetary values:
o A value of 0 indicates that parentheses surround the value and the currency symbol.

o A value of 1 indicates that the negative sign precedes the value and the currency
symbol.

o A value of 2 indicates that the negative sign follows the value and the
currency symbol.

o A value of 3 indicates that the negative sign immediately precedes the currency
symbol.

o A value of 4 indicates that the negative sign immediately follows the
currency symbol.

m p cs precedes — Whether the currency symbol precedes or follows the value for
positive monetary values:

o A value of 0 indicates that the symbol follows the value.

o A value of 1 indicates that the symbol precedes the value.

80-N2040-13 Rev. D 118

Qualcomm Hexagon C Library User Guide Header files

m p sep by space — Whether the currency symbol is separated by a space or by no space
from the value for positive monetary values:

]

]

A value of 0 indicates that no space separates symbol from value.

A value of 1 indicates that a space separates symbol, or adjacent symbol and sign,
from value.

[Added with C99] A value of 2 indicates that a space separates symbol from adjacent
sign, otherwise a space separates non-adjacent sign from value.

B p sign posn— The format for positive monetary values:

]

]

A value of 0 indicates that parentheses surround the value and the currency symbol.

A value of 1 indicates that the positive sign precedes the value and the currency
symbol.

A value of 2 indicates that the positive sign follows the value and the currency
symbol.

A value of 3 indicates that the positive sign immediately precedes the currency
symbol.

A value of 4 indicates that the positive sign immediately follows the currency symbol.

11.12.8 localeconv

struct lconv *localeconv (void) ;

The function returns a pointer to a static-duration structure containing numeric formatting
information for the current locale. You cannot alter values stored in the static-duration
structure. The stored values can change on later calls to 1ocaleconv or on calls to setlocale
that alter any of the categories LC ALL, LC_MONETARY, or LC_NUMERIC.

11.12.9 NULL

#define NULL <either 0, 0L, or (void *)0> [0in C++]

The macro yields a NULL pointer constant that is usable as an address constant expression.

80-N2040-13 Rev. D

119

Qualcomm Hexagon C Library User Guide Header files

11.12.10setlocale

char *setlocale(int category, const char *locname) ;

The function either returns a pointer to a static-duration string describing a new locale or
returns a NULL pointer (if the new locale cannot be selected). The value of category selects
one or more locale categories, each of which must match the value of one of the macros
defined in this standard header with names that begin with LC .

If 1locname is a NULL pointer, the locale remains unchanged. If 1ocname designates the string
"C", the new locale is the “C” locale for the locale category specified. If 1ocname designates
the string ", the new locale is the native locale (a default locale presumably tailored for the
local culture) for the locale category specified. 1ocname can also designate a string returned
on an earlier call to setlocale or to other strings that the implementation can define.

At program startup, the target environment calls set locale(LC ALL, "C") before it calls
main.

80-N2040-13 Rev. D 120

Qualcomm Hexagon C Library User Guide Header files

11.13

<math.h>

Include the standard header <math.h> to declare a number of functions that perform common
mathematical operations on real floating point values (of type £1loat, double, or long
double).

A domain error occurs when the function is not defined for its input argument value or values.
A function can report a domain error by storing the value of EDOM in errno and returning a
particular value defined for each implementation. Or it can raise an invalid floating point
exception. The macro math errhandling specifies whether either or both of these
approaches is taken.

A range error occurs when the return value of the function is defined but cannot be
represented. A function can report a range error by storing the value of ERANGE in errno and
returning one of several values:

m HUGE VAL — If the value of a function returning double is positive and too large in
magnitude to represent

m HUGE VALF — If the value of a function returning float is positive and too large in
magnitude to represent

m HUGE VALL — If the value of a function returning long double is positive and too large in
magnitude to represent

m -HUGE_VAL — If the value of a function returning double is negative and too large in
magnitude to represent

m -HUGE_VALF — If the value of a function returning float is negative and too large in
magnitude to represent

m -HUGE VALL — Ifthe value of a function returning long double is negative and too large in
magnitude to represent

m Zero — If the value of the function is too small to represent with a finite value

Or it can raise an invalid floating point exception. The macro math errhandling specifies
whether either or both of these approaches is taken.

The following pragma (added with C99) controls the behavior of real floating point expression
contraction:

#pragma STD FP_CONTRACT [ON|OFF |DEFAULT]

If the parameter is ON, the translator is permitted to evaluate an expression atomically,
possibly omitting rounding errors and the raising of floating point exceptions. If the parameter
is OFF, contraction is disallowed. The parameter DEFAULT restores the original state, which
is implementation defined.

If the pragma occurs outside an external declaration, it remains in effect until overridden by
another such pragma.

If the pragma occurs inside an external declaration, it must precede all explicit declarations
and statements within a compound statement. It remains in effect until overridden by another
such pragma or until the end of the compound statement.

80-N2040-13 Rev. D 121

Qualcomm Hexagon C Library User Guide Header files

Many of the functions declared in this header have additional overloads in C++, which behave
much like the generic functions defined in <tgmath.h>, which behave much like the generic
functions defined in <tgmath.hs>. The following functions have such additional overloads:

acos
acosh
asin
asinh
atan
atan2
atanh
cbrt
ceil
copysign
cos
cosh
erf
erfc

/* MACRO
#define
#define
#define

#define
#define

#define
#define
#define

#define
#define
#define
#define
#define

#define
#define

#define
#define
#define

/* TYPES
typedef
typedef

exp lgamma remguo
exp?2 llrint rint
expml llround round
fabs log scalbln
fdim loglo scalbn
floor loglp sin
fma logb sinh
fmax lrint sqgrt
fmin lround tan
fmod nearbyint tanh
frexp nextafter tgamma
hypot nexttoward trunc
ilogb pow

ldexp remainder

S */

HUGE VAL <double rvalue>

HUGE VALF <float rvalue> [Added with C99]

HUGE VALL <long double rvalue> [Added with C99]

INFINITY <float rvalue> [Added with C99]
NAN <float rvalue> [Added with C99]

FP_FAST FMA <integer constant expressions> [Optional with C99]
FP_FAST FMAF <integer constant expressions> [Optional with C99]
FP_FAST FMAL <integer constant expressions> [Optional with C99]

FP_INFINITE <integer constant expression> [Added with C99]
FP_NAN <integer constant expression> [Added with C99]
FP_NORMAL <integer constant expression> [Added with C99]
FP_SUBNORMAL <integer constant expression> [Added with C99]
FP_ZERO <integer constant expression> [Added with C99]

FP_ILOGBO <integer constant expression> [Added with C99]
FP_ILOGBNAN <integer constant expression> [Added with C99]

MATH ERRNO 1 [Added with C99]
MATH ERREXCEPT 2 [Added with C99]
math errhandling <int rvalue [0, 4)> [Added with C99]

*/
f-type double t; [Added with C99]
f-type float t; [Added with C99]

80-N2040-13 Rev. D

122

Qualcomm Hexagon C Library User Guide Header files

/* GENERIC FUNCTION MACROS [Macros in C, functions in C++] */
#define signbit (x) <int rvalue> [Added with C99, bool funs in C++]

#define fpclassify(x) <int rvalue> [Added with C99, int fns in C++]
#define isfinite(x) <int rvalue> [Added with C99, bool fns in C++]
#define isinf (x) <int rvalue> [Added with C99, bool fns in C++]
#define isnan(x) <int rvalue> [Added with C99, bool fns in C++]
#define isnormal (x) <int rvalue> [Added with C99, bool fns in C++]

#define isgreater(x, y) <int rvalue> [Added C99, bool fns in C++]
#define isgreaterequal (x, y) <int rvalue> [Added C99, bool in C++]
#define islessequal (x, y) <int rvalue> [Added C99, bool fns in C++]
#define islessgreater(x, y) <int rvalue> [Added C99, bool in C++]
#define isunordered(x, y) <int rvalue> [Added C99, bool fns in C++]

/* FUNCTIONS */

double abs(double x); [C++ only]

float abs(float x); [C++ only]

long double abs(long double x); [C++only]

double acos (double x);

float acos(float x); [C++only]

long double acos (long double x); [C++ only]

float acosf (float x); [Required with C99]

long double acosl (long double x); [Required with C99]

double asin (double x) ;

float asin(float x); [C++ only]

long double asin(long double x); [C++ only]

float asinf (float x); [Required with C99]

long double asinl (long double x); [Required with C99]

double atan (double x);

float atan(float x); [C++ only]

long double atan(long double x); [C++ only]

float atanf (float x); [Required with C99]

long double atanl (long double x); [Required with C99]

double atan2 (double y, double x);

float atan2(float y, float x); [C++ only]

long double atan2 (long double y, long double x); [C++only]

float atan2f (float y, float x); [Required with C99]

long double atan2l(long double y, long double x); [Required with C99]

double ceil (double x) ;

float ceil (float x); [C++only]

long double ceil (long double x); [C++ only]

float ceilf (float x); [Required with C99]

long double ceill (long double x); [Required with C99]

double cos (double x) ;

float cos(float x); [C++ only]

long double cos(long double x); [C++only]
float cosf (float x); [Required with C99]

80-N2040-13 Rev. D 123

Qualcomm Hexagon C Library User Guide Header files

long double cosl (long double x); [Required with C99]

double cosh (double x) ;

float cosh(float x); [C++only]

long double cosh(long double x); [C++ only]

float coshf (float x); [Required with C99]

long double coshl (long double x); [Required with C99]

double exp (double x) ;

float exp(float x); [C++ only]

long double exp(long double x); [C++only]

float expf (float x); [Required with C99]

long double expl (long double x); [Required with C99]

double fabs (double x) ;

float fabs(float x); [C++only]

long double fabs (long double x); [C++ only]

float fabsf (float x); [Required with C99]

long double fabsl (long double x); [Required with C99]

double floor (double x);

float floor (float x); [C++only]

long double floor (long double x); [C++only]

float floorf (float x); [Required with C99]

long double floorl (long double x); [Required with C99]

double fmod (double x, double y);

float fmod(float x, float y); [C++ only]

long double fmod(long double x, long double y); [C++ only]

float fmodf (float x, float y); [Required with C99]

long double fmodl (long double x, long double y); [Required with C99]

double frexp(double x, int *pexp) ;

float frexp(float x, int *pexp); [C++ only]

long double frexp (long double x, int *pexp); [C++only]

float frexpf (float x, int *pexp); [Required with C99]

long double frexpl (long double x, int *pexp); [Required with C99]

double ldexp (double x, int ex);

float ldexp(float x, int ex); [C++ only]

long double ldexp (long double x, int ex); [C++ only]

float ldexpf (float x, int ex); [Required with C99]

long double ldexpl (long double x, int ex); [Required with C99]

double log(double x) ;

float log(float x); [C++ only]

long double log(long double x); [C++only]

float logf (float x); [Required with C99]

long double logl (long double x); [Required with C99]

double loglO (double x) ;

float logl0(float x); [C++ only]

long double logl0 (long double x); [C++only]
float loglOf (float x); [Required with C99]

80-N2040-13 Rev. D 124

Qualcomm Hexagon C Library User Guide Header files

long double 1logl01l(long double x); [Required with C99]

double modf (double x, double *pint);

float modf (float x, float *pint); [C++only]

long double modf (long double x, long double *pint); [C++only]

float modff (float x, float *pint); [Required with C99]

long double modfl (long double x, long double *pint); [Required with C99]

double pow(double x, double vy);

float pow(float x, float y); [CH++ only]

long double pow(long double x, long double y); [C++only]

double pow (double x, int y); [C++ only]

float pow(float x, int y); [C++ only]

long double pow(long double x, int y); [C++ only]

float powf (float x, float y); [Required with C99]

long double powl (long double x, long double y); [Required with C99]

double sin(double x) ;

float sin(float x); [C++ only]

long double sin(long double x); [C++ only]

float sinf (float x); [Required with C99]

long double sinl (long double x); [Required with C99]

double sinh(double x);

float sinh(float x); [C++ only]

long double sinh(long double x); [C++ only]

float sinhf (float x); [Required with C99]

long double sinhl (long double x); [Required with C99]

double sqgrt (double x);

float sqgrt(float x); [C++only]

long double sqgrt (long double x); [C++ only]

float sqgrtf (float x); [Required with C99]

long double sqgrtl (long double x); [Required with C99]

double tan(double x) ;

float tan(float x); [C++ only]

long double tan(long double x); [C++only]

float tanf (float x); [Required with C99]

long double tanl (long double x); [Required with C99]

double tanh (double x) ;

float tanh(float x); [C++only]

long double tanh(long double x); [C++ only]

float tanhf (float x); [Required with C99]

long double tanhl (long double x); [Required with C99]

double acosh(double x); [All added with C99]
float acosh(float x); [C++ only]

long double acosh(long double x); [C++only]
float acoshf (float x);

long double acoshl (long double x);

80-N2040-13 Rev. D 125

Qualcomm Hexagon C Library User Guide Header files

double asinh(double x); [All added with C99]
float asinh(float x); [C++ only]

long double asinh(long double x); [C++only]
float asinhf (float x);

long double asinhl (long double x) ;

double atanh(double x); [All added with C99]
float atanh(float x); [C++ only]

long double atanh(long double x); [C++only]
float atanhf (float x);

long double atanhl (long double x) ;

double cbrt (double x); [All added with C99]
float cbrt(float x); [C++only]

long double cbrt (long double x); [C++ only]
float cbrtf (float x);

long double cbrtl (long double x);

double copysign(double x, double y); [All added with C99]

float copysign(float x, float y); [C++only]

long double copysign(long double x, long double y); [C++ only]
float copysignf (float x, float vy);

long double copysignl (long double x, long double Vy);

double erf (double x); [All added with C99]
float erf (float x); [C++ only]

long double erf (long double x); [C++ only]
float erff (float x);

long double erfl (long double x);

double erfc (double x); [All added with C99]
float erfc(float x); [C++only]

long double erfc(long double x); [C++ only]
float erfcf (float x);

long double erfcl (long double x);

float explOf (float x);

double exp2 (double x); [All added with C99]
float exp2(float x); [C++ only]

long double exp2(long double x); [C++ only]
float exp2f (float x);

long double exp2l (long double x);

double expml (double x); [All added with C99]
float expml (float x); [C++ only]

long double expml (long double x); [C++only]
float expmlf (float x);

long double expmll (long double x);

double fdim(double x, double y); [All added with C99]

float fdim(float x, float y); [C++ only]

long double fdim(long double x, long double y); [C+t+only]
float fdimf (float x, float vy);

long double fdiml (long double x, long double y);

80-N2040-13 Rev. D 126

Qualcomm Hexagon C Library User Guide Header files

double fma(double x, double y, double z); [All added with C99]

float fma(float x, float y, float z); [C++ only]

long double fma(long double x, long double y, long double z); [C++only]
float fmaf (float x, float vy, float z);

long double fmal (long double x, long double y, long double z);

double fmax (double x, double y); [All added with C99]

float fmax(float x, float vy) [C++ only]

long double fmax(long double x, long double y); [C++only]
float fmaxf (float x, float y);

long double fmaxl (long double x, long double y);

double fmin(double x, double y); [All added with C99]

float fmin(float x, float y) [C++0n1y]

long double fmin (long double x, long double y); [C++only]
float fminf (float x, float y);

long double fminl (long double x, long double vy);

double hypot (double x, double y); [All added with C99]

float hypot (float x, float y) [C++ only]

long double hypot (long double x, long double y); [C++only]
float hypotf (float x, float vy);

long double hypotl (long double x, long double vy);

int ilogb (double x); [All added with C99]
int ilogb (float x); [C++ only]

int ilogb (long double x); [C++ only]
int ilogbf (float x);

int ilogbl (long double x);

double j0 (double x); [POSIX]
double jl(double x); [POSIX]
double jn(int n, double x); [POSIX]

double lgamma (double x); [All added with C99]
float lgamma (float x); [C++ only]

long double lgamma (long double x); [C++ only]
float lgammaf (float x) ;

long double lgammal (long double x) ;

long long llrint (double x); [All added with C99]
long long llrint (float x); [C++ only]

long long llrint (long double x); [C++ only]
long long llrintf (float x);

long long llrintl (long double x);

long long llround (double x); [All added with C99]
long long llround (float x); [C++ only]

long long llround(long double x); [C++only]
long long llroundf (float x);

long long llroundl (long double x) ;

double loglp(double x); [All added with C99]
float loglp(float x); [C++ only]

80-N2040-13 Rev. D 127

Qualcomm Hexagon C Library User Guide Header files

long double loglp(long double x); [C++only]
float loglpf (float x);
long double loglpl (long double x);

double log2 (double x); [All added with C99]
float log2(float x); [C++ only]

long double log2 (long double x); [C++ only]
float log2f (float x);

long double log2l (long double x);

double logb (double x); [All added with C99]
float logb(float x); [C++ only]

long double logb(long double x); [C++ only]
float logbf (float x);

long double logbl (long double x);

long lrint (double x); [All added with C99]
long lrint (float x); [C++ only]

long lrint (long double x); [C++ only]
long lrintf (float x);

long lrintl (long double x);

long lround (double x); [All added with C99]
long lround(float x); [C++only]

long lround(long double x); [C++ only]
long lroundf (float x);

long lroundl (long double x);

double nan(const char *str); [All added with C99]
float nanf (const char *str);
long double nanl (const char *str);

double nearbyint (double x); [All added with C99]
float nearbyint (float x); [C++ only]

long double nearbyint (long double x); [C++ only]
float nearbyintf (float x);

long double nearbyintl (long double x);

double nextafter (double x, double y); [All added with C99]

float nextafter(float x, float y); [C++ only]

long double nextafter(long double x, long double y); [C++ only]
float nextafterf (float x, float y);

long double nextafterl (long double x, long double V) ;

double nexttoward (double x, long double y); [All added with C99]
float nexttoward(float x, long double y); [C++ only]

long double nexttoward(long double x, long double y); [C++ only]
float nexttowardf (float x, long double vy);

long double nexttowardl (long double x, long double y);

double remainder (double x, double y); [All added with C99]

float remainder (float x, float y); [C++ only]

long double remainder (long double x, long double y); [C++ only]
float remainderf (float x, float vy);

long double remainderl (long double x, long double y);

80-N2040-13 Rev. D 128

Qualcomm Hexagon C Library User Guide Header files

double remguo (double x, double y, int *pquo); [All added with C99]

float remquo (float x, float y, int *pguo); [C++ only]

long double remguo (long double x, long double y, int *pgquo); [C++ only]
float remquof (float x, float y, int *pquo);

long double remquol (long double x, long double y, int *pquo) ;

double rint (double x); [All added with C99]
float rint (float x); [C++only]

long double rint (long double x); [C++ only]
float rintf (float x);

long double rintl (long double x);

double round(double x); [All added with C99]
float round(float x); [C++only]

long double round(long double x); [C++only]
float roundf (float x);

long double roundl (long double x) ;

double scalb(double x, double n); [POSIX]

double scalbln(double x, long ex); [All added with C99]
float scalbln(float x, long ex); [C++only]

long double scalbln(long double x, long ex); [C++only]
float scalblnf (float x, long ex);

long double scalblnl (long double x, long ex) ;

double scalbn(double x, int ex); [All added with C99]
float scalbn(float x, int ex); [C++ only]

long double scalbn(long double x, int ex); [C++ only]
float scalbnf (float x, int ex);

long double scalbnl (long double x, int ex);

double tgamma (double x); [All added with C99]
float tgamma (float x); [C++ only]

long double tgamma (long double x); [C++ only]
float tgammaf (float x) ;

long double tgammal (long double x) ;

double trunc (double x); [All added with C99]
float trunc(float x); [C++only]

long double trunc (long double x); [C++only]
float truncf (float x);

long double truncl (long double x);

double y0 (double x); [POSIX]
double yl (double x); [POSIX]
double yn(int n, double x); [POSIX]

80-N2040-13 Rev. D 129

Qualcomm Hexagon C Library User Guide Header files

11.13.1 abs, fabs, fabsf, fabsl

double abs(double x); [C++ only]

float abs(float x); [C++ only]

long double abs(long double x); [C++ only]

double fabs (double x) ;

float fabs(float x); [C++ only]

long double fabs(long double x); [C++ only]

float fabsf (float x); [Required with C99]

long double fabsl (long double x); [Required with C99]

The function returns the magnitude of x, |x]|.

11.13.2 acos, acosf, acosl

double acos (double x) ;

float acos(float x); [C++only]

long double acos (long double x); [C++ only]

float acosf (float x); [Required with C99]

long double acosl (long double x); [Required with C99]

The function returns the angle whose cosine is x, in the range [0, pi] radians. A domain
error occurs if 1 < |x].

11.13.3 acosh, acoshf, acoshl

double acosh(double x); [All added with C99]
float acosh(float x); [C++ only]

long double acosh(long double x); [C++only]
float acoshf (float x);

long double acoshl (long double x);

The function returns the hyperbolic arccosine of x, in the range [0, infinity]. A domain
error occurs if x < 1.

11.13.4 asin, asinf, asinl

double asin(double x);

float asin(float x); [C++only]

long double asin(long double x); [C++ only]

float asinf (float x); [Required with C99]

long double asinl (long double x); [Required with C99]

The function returns the angle whose sine is x, in the range [-pi/2, +pi/2] radians. A
domain error occurs if 1 < |x].

80-N2040-13 Rev. D 130

Qualcomm Hexagon C Library User Guide Header files

11.13.5 asinh, asinhf, asinhl

double asinh(double x); [All added with C99]
float asinh(float x); [C++only]

long double asinh(long double x); [C++only]
float asinhf (float x);

long double asinhl (long double x) ;

The function returns the hyperbolic arcsine of x.

11.13.6 atan, atanf, atanl

double atan(double x);

float atan(float x); [C++only]

long double atan(long double x); [C++ only]

float atanf (float x); [Required with C99]

long double atanl (long double x); [Required with C99]

The function returns the angle whose tangent is x, in the range [-pi/2, +pi/2] radians.

11.13.7 atan2, atan2f, atan2l

double atan2 (double y, double x);

float atan2(float y, float x); [C++ only]

long double atan2(long double y, long double x); [C++ only]

float atan2f (float y, float x); [Required with C99]

long double atan2l(long double y, long double x); [Required with C99]

The function returns the angle whose tangent is y/x, in the full angular range [-pi, +pi]
radians. A domain error might occur if both x and y are zero.

11.13.8 atanh, atanhf, atanhl

double atanh(double x); [All added with C99]
float atanh(float x); [C++ only]

long double atanh(long double x); [C++only]
float atanhf (float x);

long double atanhl (long double x) ;

The function returns the hyperbolic arctangent of x. A domain error occurs if x < -1 or
+1 < x.

80-N2040-13 Rev. D 131

Qualcomm Hexagon C Library User Guide

Header files

11.13.9 cbrt, cbrtf, cbrtl

double cbrt (double x); [All added with C99]
float cbrt(float x); [C+t only]

long double cbrt(long double x); [C++ only]
float cbrtf (float x);
long double cbrtl (long double x);

The function returns the real cube root of x,x* (1/3).

11.13.10ceil, ceilf, ceill

double ceil (double x) ;

float ceil (float x); [C++only]

long double ceil (long double x); [C++ only]
float ceilf (float x); [Required with C99]

long double ceill (long double x); [Required with C99]

The function returns the smallest integer value not less than x.

11.13.11 copysign, copysignf, copysignl

double copysign(double x, double y); [All added with C99]

float copysign(float x, float y); [C++only]

long double copysign(long double x, long double y); [C++only]

float copysignf (float x, float y);

long double copysignl (long double x, long double y);

The function returns x, with its sign bit replaced from y.

11.13.12cos, cosf, cosl

double cos (double x) ;

float cos(float x); [C++ only]

long double cos(long double x); [C++ only]

float cosf (float x); [Required with C99]

long double cosl(long double x); [Required with C99]

The function returns the cosine of x. If x is large the value returned might not be meaningful,

but the function reports no error.

11.13.13cosh, coshf, coshl

double cosh(double x);

float cosh(float x); [C++ only]

long double cosh(long double x); [C++ only]

float coshf (float x); [Required with C99]

long double coshl (long double x); [Required with C99]

The function returns the hyperbolic cosine of x.

80-N2040-13 Rev. D

132

Qualcomm Hexagon C Library User Guide Header files

11.13.14double_t

typedef f-type double t; [Added with C99]

The type is a synonym for the floating point type f-type, which is one of:

double if FLT_EVAL METHOD is zero
double if FLT EVAL METHOD is 1
long double if FLT_EVAL METHOD is 2

Otherwise, double t is a real floating point type at least as wide as float_t.

11.13.15erf, erff,erfl

double erf (double x); [All added with C99]
float erf (float x); [C++ only]

long double erf (long double x); [C++ only]
float erff (float x);
long double erfl(long double x);

The function returns the error function of x.

11.13.16erfc, erfcf, erfcl

double erfc (double x); [All added with C99]
float erfc(float x); [C++only]

long double erfc(long double x); [C++only]
float erfcf (float x);
long double erfcl (long double x);

The function returns the complementary error function of x.

11.13.17exp, expf, expl

double exp (double x) ;

float exp(float x); [C++ only]

long double exp(long double x); [C++only]

float expf (float x); [Required with C99]

long double expl (long double x); [Required with C99]

The function returns the exponential of x, e”x.

11.13.18exp10f

float explOf (float x); [Required with C99]

The function returns the base-10 exponential of x.

80-N2040-13 Rev. D 133

Qualcomm Hexagon C Library User Guide Header files

11.13.19exp2, exp2f, exp2l

double exp2 (double x); [All added with C99]
float exp2(float x); [C++ only]

long double exp2(long double x); [C++ only]
float exp2f(float x);

long double exp2l (long double x);

The function returns two raised to the power x, 2/x.

11.13.20expm1, expm1f, expm1I

double expml (double x); [All added with C99]
float expml (float x); [C++ only]

long double expml (long double x); [C++only]
float expmlf (float x);
long double expmll (long double x);

The function returns one less than the exponential function of x, e*x - 1.

11.13.21fdim, fdimf, fdiml

double fdim(double x, double y); [All added with C99]
float fdim(float x, float y); [C+tonly]

long double fdim(long double x, long double y); [C+t+only]
float fdimf (float x, float y);

long double fdiml (long double x, long double y);

The function returns the larger of x - y and zero.

11.13.22float_t

typedef f-type float t; [Added with C99]

The type is a synonym for the floating point type f-type, which is one of:

float if FLT_EVAL METHOD is zero
double if FLT EVAL METHOD is 1
long double if FLT_EVAL METHOD is 2

Otherwise, float_t is a real floating point type not wider than double t.

11.13.23floor, floorf, floorl

double floor (double x) ;

float floor (float x); [C++only]

long double floor (long double x); [C++only]

float floorf (float x); [Required with C99]

long double floorl (long double x); [Required with C99]

The function returns the largest integer value not greater than x.

80-N2040-13 Rev. D 134

Qualcomm Hexagon C Library User Guide Header files

11.13.24fma, fmaf,fmal

double fma (double x, double y, double z); [All added with C99]
float fma(float x, float y, float z); [C++ only]

long double fma(long double x, long double y, long double z); [C++ only]
float fmaf(float x, float vy, float z);

long double fmal(long double x, long double y, long double z);

The function returns x * y + z, to arbitrary intermediate precision.

11.13.25fmax, fmaxf, fmaxl

double fmax (double x, double y); [All added with C99]
float fmax(float x, float y); [C+tonly]

long double fmax(long double x, long double y); [C+t+only]
float fmaxf(float x, float y);

long double fmaxl (long double x, long double y);

The function returns the larger (more positive) of x and y.

11.13.26fmin, fminf, fminl

double fmin (double x, double y); [All added with C99]
float fmin(float x, float y); [C+tonly]

long double fmin(long double x, long double y); [C+t+only]
float fminf (float x, float y);

long double fminl (long double x, long double y);

The function returns the smaller (more negative) of x and y

11.13.27fmod, fmodf, fmodl

double fmod (double x, double y);

float fmod(float x, float y); [C++ only]

long double fmod(long double x, long double y); [C++ only]

float fmodf (float x, float y); [Required with C99]

long double fmodl (long double x, long double y); [Required with C99]

The function returns the remainder of x/v, which is defined as follows:
m Ify is zero, the function either reports a domain error or simply returns zero.

m Otherwise, the function determines the unique signed integer value i such that the
returned value x - i * y has the same sign as x and magnitude less than |y]|.

80-N2040-13 Rev. D 135

Qualcomm Hexagon C Library User Guide Header files

11.13.28fpclassify

#define fpclassify(x) <int rvalue> [Added with C99, int functions in C++]

The generic-function macro accepts an rvalue argument x of some real floating point type
and evaluates to:

m FP_INFINITE for an argument that is positive or negative infinity
m FP_NAN for an argument that is not-a-number (NaN)

m FP_NORMAL for an argument that is finite and normalized

m FP_SUBNORMAL for an argument that is finite and denormalized

m FP_ZERO for an argument that is positive or negative zero

Or possibly some other implementation-defined value.

11.13.29FP_FAST_FMA

#define FP_FAST FMA <integer constant expressions> [Optional with C99]

The macro is defined only if the call fma (x, y, z) executes as fast as the double expression

X *y + zZ

11.13.30FP_FAST_FMAF

#define FP_FAST FMAF <integer constant expressions> [Optional with C99]

The macro is defined only if the call fmaf (x, y, z) executes as fast as the float expression x

* Yy o+ zZ.

11.13.31FP_FAST_FMAL

#define FP_FAST FMAL <integer constant expressions> [Optional with C99]

The macro is defined only if the call fmal (x, y, z) executes as fast as the long double
expressionx * y + z.

11.13.32FP_ILOGBO

#define FP_ILOGBO <integer constant expression> [Added with C99]

The macro defines the value returned by ilogb for an argument that is positive or negative
zero. The value of the macro is either INT MIN or -INT MAX.

80-N2040-13 Rev. D 136

Qualcomm Hexagon C Library User Guide Header files

11.13.33FP_ILOGBNAN

#define FP_ILOGBNAN <integer constant expression> [Added with C99]

The macro defines the value returned by i1logb for an argument that is not-a-number (NaN).
The value of the macro is either INT MIN or INT MAX.

11.13.34FP_INFINITE

#define FP_INFINITE <integer constant expression> [Added with C99]

The macro defines the value of the macro fpclassify for an argument that is positive or
negative infinity.

11.13.35FP_NAN

#define FP_NAN <integer constant expression> [Added with C99]

The macro defines the value of the macro fpclassify for an argument that is not-a-number
(NaN).

11.13.36FP_NORMAL

#define FP_NORMAL <integer constant expression> [Added with C99]

The macro defines the value of the macro fpclassify for an argument that is finite and
normalized.

11.13.37FP_SUBNORMAL

#define FP_SUBNORMAL <integer constant expression> [Added with C99]

The macro defines the value of the macro fpclassify for an argument that is finite and
denormalized.

11.13.38FP_ZERO

#define FP_ZERO <integer constant expression> [Added with C99]

The macro defines the value of the macro fpclassify for an argument that is positive or
negative zero.

80-N2040-13 Rev. D 137

Qualcomm Hexagon C Library User Guide Header files

11.13.39frexp, frexpf, frexpl

double frexp(double x, int *pexp) ;

float frexp(float x, int *pexp); [C++ only]

long double frexp (long double x, int *pexp); [C++only]

float frexpf (float x, int *pexp); [Required with C99]

long double frexpl (long double x, int *pexp); [Required with C99]

The function determines a fraction frac and an exponent integer ex that represent the value of
x. It returns the value frac and stores the integer ex in *pexp, such that:

m |frac| isin the interval [1/2, 1) oris zero

m x == frac * 2%ex

If x is zero, *pexp is also zero.

11.13.40HUGE_VAL

#define HUGE_VAL <double rvalue>

The macro yields the double value returned by some functions on a range error. The value can
be a representation of infinity.

11.13.41HUGE_VALF

#define HUGE VALF <float rvalue> [Added with C99]

The macro yields the float value returned by some functions on a range error. The value can be
a representation of infinity.

11.13.42HUGE_VALL

#define HUGE VALL <long double rvalues> [Added with C99]

The macro yields the long double value returned by some functions on a range error. The value
can be a representation of infinity.

11.13.43hypot, hypotf, hypotl

double hypot (double x, double y); [All added with C99]

float hypot(float x, float y); [C++ only]

long double hypot (long double x, long double vy); [C++ only]
float hypotf(float x, float y);

long double hypotl (long double x, long double y);

The function returns the square root of x*2 + y*2.

80-N2040-13 Rev. D 138

Qualcomm Hexagon C Library User Guide Header files

11.13.44ilogb, ilogbf, ilogbl

int ilogb (double x); [All added with C99]
int ilogb (float x); [C++ only]

int ilogb (long double x); [C++ only]
int ilogbf (float x);

int ilogbl (long double x);

The function returns:
m For x not-a-number (NaN), the value of the macro FP_ILOGBNAN
m For x equal to zero, the value of the macro FP_ILOGBO

m For x equal to positive or negative infinity, the value of the macro INT MAX

Otherwise, it returns (int) logb (x).

11.13.45INFINITY

#define INFINITY <float rvalue> [Added with C99]

The macro yields a float value that represents positive infinity.

11.13.46isfinite

#define isfinite(x) <int rvalue> [Added with C99, bool fns in C++]

The generic-function macro accepts an rvalue argument x of some real floating point type
and yields a nonzero value only if x is finite.

11.13.47isgreater

#define isgreater(x, y) <int rvalue> [Added C99, bool fns in C++]

The generic-function macro accepts two rvalue arguments x and y, at least one of which is a
real floating point type, and yields the value 1 only if x > y and neither x nor y is not-a-
number (NaN). Otherwise, it yields the value zero. The macro never raises an invalid floating
point exception.

11.13.48isgreaterequal

#define isgreaterequal (x, y) <int rvalue> [added C99, bool fns C++]

The generic-function macro accepts two rvalue arguments x and y, at least one of which is a
real floating point type, and yields the value 1 only if x >= y and neither x nor y is not-a-
number (NaN). Otherwise, it yields the value zero. The macro never raises an invalid floating
point exception.

80-N2040-13 Rev. D 139

Qualcomm Hexagon C Library User Guide Header files

11.13.49isinf

#define isinf (x) <int rvalue> [Added with C99, bool fns in C++]

The isinf macro determines whether its argument x is an infinity (positive or negative). An
argument represented in a format wider than its semantic type is converted to its semantic type
first. The determination is then based on the type of the argument.

This macro returns a nonzero value if the value of x is an infinity. Otherwise, the macro returns
Zero.

11.13.50isless

#define isless(x, y) <int rvalue> [Added with C99, bool functions in C++]

The generic-function macro accepts two rvalue arguments x and y, at least one of which is a
real floating point type, and yields the value 1 only if x < y and neither x nor y is not-a-
number (NaN). Otherwise, it yields the value zero. The macro never raises an invalid floating
point exception.

11.13.51islessequal
#define islessequal (x, y) <int rvalue> [Added with C99, bool functions in C++]

The generic-function macro accepts two rvalue arguments x and vy, at least one of which is a
real floating point type, and yields the value 1 only if x <= y and neither x nor y is not-a-
number (NaN). Otherwise, it yields the value zero. The macro never raises an invalid floating
point exception.

11.13.52islessgreater
#define islessgreater(x, y) <int rvalue> [Added with C99, bool functions in C++]

The generic-function macro accepts two rvalue arguments x and y, at least one of which is a
real floating point type, and yields the value 1 only if x < v || x > y and neither x nor y is
not-a-number (NaN). Otherwise, it yields the value zero. The macro never raises an invalid
floating point exception.

11.13.53isnan

#define isnan(x) <int rvalue> [Added with C99, bool fns in C++]

The macro determines whether its argument x is not-a-number (NaN). An argument
represented in a format wider than its semantic type is converted to its semantic type first. The
determination is then based on the type of the argument.

The macro returns a nonzero value if the value of x is NaN. Otherwise O is returned.

80-N2040-13 Rev. D 140

Qualcomm Hexagon C Library User Guide Header files

11.13.54isnormal

#define isnormal (x) <int rvalue> [Added with C99, bool functions in C++]

The generic-function macro accepts an rvalue argument x of some real floating point type
and yields a nonzero value only if x is finite and normalized.

11.13.55isunordered

#define isunordered(x, y) <int rvalue> [Added with C99, bool functions in C++]

The generic-function macro accepts two rvalue arguments x and y, at least one of which is a
real floating point type, and yields the value 1 only if at least one of the two arguments is not-
a-number (NaN). Otherwise, it yields the value zero. The macro never raises an invalid
floating point exception.

11.13.56j0

double j0 (double x); [POSIX]
The macro computes the Bessel function of the first kind of the order o for the real value x;

If successful, the function returns the computed value, otherwise errno is set to EDOM and a
reserve operand fault is generated.

11.13.57j1
double jl(double x); [POSIX]
The macro computes the Bessel function of the first kind of the order 1 for the real value x;

If successful, the function returns the computed value, otherwise errno is set to EDOM and a
reserve operand fault is generated.

11.13.58jn
double jn(int n, double x); [POSIX]

The macro computes the Bessel function of the first kind of the integer order n for the real
value x.

If successful, the function returns the computed value, otherwise errno is set to EDOM and a
reserve operand fault is generated.

80-N2040-13 Rev. D 141

Qualcomm Hexagon C Library User Guide Header files

11.13.591dexp, Idexpf, Idexpl

double 1ldexp (double x, int ex);

float ldexp (float x, int ex); [C++ only]

long double ldexp (long double x, int ex); [C++ only]

float ldexpf (float x, int ex); [Required with C99]

long double ldexpl(long double x, int ex); [Required with C99]

The function returns x * 2"ex.

11.13.60lgamma, Igammaf, Igammal

double lgamma (double x); [All added with C99]
float lgamma (float x); [C++ only]

long double lgamma (long double x); [C++ only]
float lgammaf (float x);

long double lgammal (long double x) ;

The function returns the natural logarithm of the absolute value of the gamma function of x.

11.13.61lIrint, llrintf, lIrintl

long long llrint (double x); [All added with C99]
long long llrint(float x); [C++ only]

long long llrint(long double x); [C++ only]
long long llrintf (float x);

long long llrintl(long double x);

(
(

The function returns the nearest long long integer to x, consistent with the current rounding
mode.

m [t raises an invalid floating point exception if the magnitude of the rounded value is too
large to represent.

m [t raises an inexact floating point exception if the return value does not equal x.

11.13.62lIround, llroundf, liroundi

long long llround(double x); [All added with C99]
long long llround(float x); [C++ only]

long long llround(long double x); [C++only]
long long llroundf (float x);

long long llroundl (long double x);

(
(

The function returns the nearest long long integer to x, rounding halfway values away from
zero, regardless of the current rounding mode.

80-N2040-13 Rev. D 142

Qualcomm Hexagon C Library User Guide Header files

11.13.63log, logf, logl

double log (double x) ;

float log(float x); [C++ only]

long double log(long double x); [C++ only]

float logf (float x); [Required with C99]

long double logl(long double x); [Required with C99]

The function returns the natural logarithm of x. A domain error occurs if x < 0.

11.13.64l0g10, log10f, log10l

double loglO (double x);

float logl0 (float x); [C++ only]

long double logl0 (long double x); [C++only]

float loglOf (float x); [Required with C99]

long double logl0l(long double x); [Required with C99]

The function returns the base-10 logarithm of x. A domain error occurs if x < 0.

11.13.65log1p, log1pf, log1pl

double loglp (double x); [All added with C99]
float loglp(float x); [C++only]

long double loglp (long double x); [C++only]
float loglpf (float x);

long double loglpl (long double x);

The function returns the natural logarithm of 1 + x. A domain error occurs if x < -1.

11.13.66l0g2, log2f, log2I

double log2 (double x); [All added with C99]
float log2(float x); [C++ only]

long double log2 (long double x); [C++ only]
float log2f (float x);

long double log2l(long double x);

The function returns the base-2 logarithm of x. A domain error occurs if x < 0.

80-N2040-13 Rev. D 143

Qualcomm Hexagon C Library User Guide Header files

11.13.67logb, logbf, logbl

double logb (double x); [All added with C99]
float logb(float x); [C++ only]

long double logb(long double x); [C++ only]
float logbf (float x);

long double logbl (long double x);

The function determines an integer exponent ex and a fraction frac that represent the value of
a finite x. It returns the value ex such that:

B x == frac * FLT RADIX"ex.

m |frac| isintheinterval [1, FLT RADIX).

A domain error might occur if x is zero.

11.13.68lIrint, Irintf, Irintl

long lrint (double x); [All added with C99]
long lrint (float x); [C++ only]

long lrint (long double x); [C++ only]
long lrintf (float x);

long lrintl (long double x);

The function returns the nearest long integer to x, consistent with the current rounding mode.

m [t raises an invalid floating point exception if the magnitude of the rounded value is too
large to represent.

m it raises an inexact floating point exception if the return value does not equal x.

11.13.691round, Iroundf, Iround|

long lround (double x); [All added with C99]
long lround(float x); [C++only]

long lround(long double x); [C++only]
long lroundf (float x);

long lroundl (long double Xx);

The function returns the nearest long integer to x, rounding halfway values away from zero,
regardless of the current rounding mode.

11.13.70MATH_ERRNO

#define MATH ERRNO 1 [Added with C99]

The macro yields the value 1. It is used for testing the value of the macromath_errhandling to
determine whether a math function reports an error by storing a nonzero value in errno.

80-N2040-13 Rev. D 144

Qualcomm Hexagon C Library User Guide Header files

11.13.71MATH_ERREXCEPT

#define MATH ERREXCEPT 2 [Added with C99]

The macro yields the value 2. It is used for testing the value of the macro math _errhandling

to determine whether a math function reports an error by raising an invalid floating point
exception.

11.13.72math_errhandling

#define math errhandling <int rvalue [0, 4)> [Added with C99]

The macro specifies how math functions report a domain error or a range error. Specifically:

m If (math errhandling & MATH ERRNO) != 0,the math function stores a nonzero value
in errno and returns a specific value that characterizes the error.

m If (math errhandling & MATH ERREXCEPT) != 0, the math function raises an invalid
floating point exception. In this case, the macros FE_DIVBYZERO, FE_INVALID, and
FE_OVERFLOW are all defined.

The value of the macro remains unchanged during program execution.

11.13.73modf, modff, modfi

double modf (double x, double *pint);

float modf (float x, float *pint); [C++only]

long double modf (long double x, long double *pint); [C++ only]

float modff (float x, float *pint); [Required with C99]

long double modfl (long double x, long double *pint); [Required with C99]

The function determines an integer i plus a fraction frac that represent the value of x. It
returns the value frac and stores the integer i in *pint, such that:

B x == fraC + I

m |frac| isin the interval [0, 1)

Both frac and i have the same sign as x.

11.13.74NAN

#define NAN <float rvalue> [Added with C99]

The macro yields a float value that represents not-a-number (NaN).

80-N2040-13 Rev. D 145

Qualcomm Hexagon C Library User Guide Header files

11.13.75nan, nanf,nanl

double nan (const char *str); [All added with C99]
float nanf (const char *str);
long double nanl (const char *str);

The function converts a NULL-terminated sequence beginning at str to a not-a-number
(NaN) code. Specifically, the callnan ("n-char-seq") effectively returns strtod ("NAN (n-
char-seqg)", (char=**)o0) ifthe conversion succeeds; otherwise it returns strtod ("NAN").

11.13.76nearbyint, nearbyintf, nearbyintl

double nearbyint (double x); [All added with C99]
float nearbyint (float x); [C++ only]

long double nearbyint (long double x); [C++ only]
float nearbyintf (float x);

long double nearbyintl (long double x) ;

The function returns x rounded to the nearest integer, consistent with the current rounding
mode but without raising an inexact floating point exception.

11.13.77nextafter, nextafterf, nextafterl

double nextafter (double x, double y); [All added with C99]

float nextafter (float x, float y); [C++ only]

long double nextafter (long double x, long double y); [C++ only]
float nextafterf (float x, float y);

long double nextafterl (long double x, long double V) ;

The function returns:
m Ifx < v, the next representable value after x
m Ifx == vy, v

m Ifx > vy, the next representable value before x

11.13.78nexttoward, nexttowardf, nexttowardl

double nexttoward (double x, long double y); [All added with C99]
float nexttoward(float x, long double y); [C++ only]

long double nexttoward(long double x, long double y); [C++ only]
float nexttowardf (float x, long double vy);

long double nexttowardl (long double x, long double y);

The function returns:
m Ifx < vy, the next representable value after x
m Ifx ==y, vy

m Ifx > vy, the next representable value before x

80-N2040-13 Rev. D 146

Qualcomm Hexagon C Library User Guide Header files

11.13.79pow, powf, powl

double pow (double x, double y);

float pow(float x, float y); [C++only]

long double pow(long double x, long double y); [C++ only]

double pow(double x, int y); [C++ only]

float pow(float x, int y); [C++ only]

long double pow(long double x, int y); [C++only]

float powf (float x, float y); [Required with C99]

long double powl (long double x, long double y); [Required with C99]

The function returns x raised to the power y, x*y.

11.13.80remainder, remainderf, remainderl

double remainder (double x, double y); [All added with C99]
float remainder (float x, float y); [C++ only]

long double remainder (long double x, long double y); [C++ only]
float remainderf (float x, float y);
long double remainderl (long double x, long double y);

The function effectively returns remquo (x, y, &temp), where temp is a temporary object of
type int local to the function.

11.13.81remquo, remquof, remquol

double remquo (double x, double y, int *pquo); [All added with C99]
float remquo(float x, float y, int *pguo); [C++ only]

long double remquo (long double x, long double y, int *pgquo); [C++ only]
float remquof (float x, float y, int *pquo) ;
long double remquol (long double x, long double y, int *pquo) ;

The function computes the remainder rem == x - n*y, wheren == x/y rounded to the
nearest integer, or to the nearest even integer if |[n - x/y| == 1/2.If remis zero, it has the
same sign as x. A domain error occurs if y is zero.

The function stores in *pguo at least three of the low-order bits of |x/y|, negated if x/y < o.
It returns rem.

11.13.82rint, rintf, rintl

double rint (double x); [All added with C99]

float rint(float x); [C++only]

long double rint (long double x); [C++ only]

float rintf (float x); long double rintl (long double x);

The function returns x rounded to the nearest integer, using the current rounding mode. It
might raise an inexact floating point exception if the return value does not equal x.

80-N2040-13 Rev. D 147

Qualcomm Hexagon C Library User Guide Header files

11.13.83round, roundf, roundl

double round(double x); [All added with C99]
float round(float x); [C++only]

long double round(long double x); [C++only]
float roundf (float x);

long double roundl (long double x);

The function returns x rounded to the nearest integer n, or to the value with larger magnitude if
In - x| == 1/2.

11.13.84scalb

double scalb(double x, double n); [POSIX]

This function allows users to test conformance to IEEE Std. 754-1985. Its use is not otherwise
recommended.

11.13.85scalbln, scalbinf, scalblnl

double scalbln(double x, long ex); [All added with C99]
float scalbln(float x, long ex); [C++only]

long double scalbln(long double x, long ex); [C++only]
float scalblnf (float x, long ex);

long double scalblnl (long double x, long ex) ;

The function returns x * FLT RADIXex.

11.13.86scalbn, scalbnf, scalbnl

double scalbn (double x, int ex); [All added with C99]
float scalbn(float x, int ex); [C++ only]

long double scalbn(long double x, int ex); [C++only]
float scalbnf (float x, int ex);

long double scalbnl (long double x, int ex);

The function returns x * FLT RADIX"ex.

11.13.87signbit

#define signbit (x) <int rvalue> [Added with C99, bool functions in C++]

The generic-function macro accepts an rvalue argument x of some real floating point type

and yields a nonzero value only if the (negative) sign bit of x is set. The macro never raises an
invalid floating point exception.

80-N2040-13 Rev. D 148

Qualcomm Hexagon C Library User Guide Header files

11.13.88sin, sinf, sinl

double sin(double x) ;

float sin(float x); [C++ only]

long double sin(long double x); [C++ only]

float sinf (float x); [Required with C99]

long double sinl (long double x); [Required with C99]

The function returns the sine of x. If x is large the value returned might not be meaningful, but
the function reports no error.

11.13.89sinh, sinhf, sinhl

double sinh (double x);

float sinh(float x); [C++ only]

long double sinh(long double x); [C++ only]

float sinhf (float x); [Required with C99]

long double sinhl (long double x); [Required with C99]

The function returns the hyperbolic sine of x.

11.13.90sqrt, sqrtf, sqrtl

double sqrt (double x) ;

float sqgrt(float x); [C++only]

long double sqrt(long double x); [C++ only]

float sqrtf (float x); [Required with C99]

long double sqgrtl(long double x); [Required with C99]

The function returns the real square root of x,x” (1/2). A domain error occurs if x < 0.

11.13.91tan, tanf, tanl

double tan(double x); float tan(float x); [C++ only]
long double tan(long double x); [C++only]

float tanf (float x); [Required with C99]

long double tanl (long double x); [Required with C99]

The function returns the tangent of x. If x is large the value returned might not be meaningful,
but the function reports no error.

11.13.92tanh, tanhf, tanhl

double tanh(double x);

float tanh(float x); [C++only]

long double tanh(long double x); [C++ only]

float tanhf (float x); [Required with C99]

long double tanhl (long double x); [Required with C99]

The function returns the hyperbolic tangent of x.

80-N2040-13 Rev. D 149

Qualcomm Hexagon C Library User Guide Header files

11.13.93tgamma, tgammaf, tgammal

double tgamma (double x); [All added with C99]
float tgamma (float x); [C++only]

long double tgamma(long double x); [C++ only]
float tgammaf (float x);

long double tgammal (long double x);

The function computes the gamma function of x. A domain error occurs if X is a negative
integer.

11.13.94trunc, truncf, truncl

double trunc(double x); [All added with C99]
float trunc(float x); [C++only]

long double trunc (long double x); [C++only]
float truncf(float x);

long double truncl (long double x);

The function returns x rounded to the nearest integer n not larger in magnitude than x (toward
Zer0).

11.13.95y0

double y0 (double x); [POSIX]

The function computes the linearly independent Bessel function of the second kind of the
order o for the positive integer value x (expressed as a double). If successful, the function
returns the computed value, otherwise errno is set to EDOM and a reserve operand fault is
generated.

11.13.96y1

double yl (double x); [POSIX]

The function computes the linearly independent Bessel function of the second kind of the
order 1 for the positive integer value x (expressed as a double). If successful, the function

returns the computed value, otherwise errno is set to EDOM and a reserve operand fault is
generated.

11.13.97yn

double yn(int n, double x); [POSIX]

The function computes the Bessel function of the second kind for the integer order n for the
positive integer value x (expressed as a double). If successful, the function returns the
computed value, otherwise errno is set to EDOM and a reserve operand fault is generated.

80-N2040-13 Rev. D 150

Qualcomm Hexagon C Library User Guide Header files

11.14

11.14.1

11.14.2

<search.h>

The <search.hs header file contains functions to manipulate binary search tables and
manage hash search tables.

#include <search.h>

int hcreate(size t nel); [POSIX]

void hdestroy (void); [POSIX]

ENTRY *hsearch (ENTRY item, ACTION action); [POSIX]

void tdelete(const void * restrict key, void ** restrict rootp, int

(*compar) (const void *, const void *)); [POSIX]

void *tfind(const void *key, const void * const *rootp,
int (*compar) (const void *, const void *)); [POSIX]

void *tsearch (const void *key, void **rootp, int (*compar)
(const void *, const void *)); [POSIX]

void twalk (const void *root, void (*action) (const void ¥*,
VISIT, int)); [POSIX]

hcreate
int hcreate(size_ t nel); [POSIX]

The function allocates and initializes the hash search table. The nel argument specifies an
estimate of the maximum number of entries to be held by the table. Unless further memory
allocation fails, supplying an insufficient nel value will not result in functional harm, although
a performance degradation may occur.

Initialization using the hcreate function is mandatory prior to any access operations using
hsearch.

If successful, hcreate returns a nonzero value. Otherwise, a value of 0 is returned and errno
is set to indicate the error.

hdestroy
void hdestroy (void); [POSIX]

The function destroys a table previously created using hcreate. After a call to hdestroy, the
data can no longer be accessed.

The hdestroy function returns no value.

80-N2040-13 Rev. D 151

Qualcomm Hexagon C Library User Guide Header files

11.14.3 hsearch

ENTRY *hsearch (ENTRY item, ACTION action); [POSIX]

Use this function to search the hash table. It returns a pointer into the hash table indicating the
address of an item. The item argument is of type ENTRY, a structural type which contains the
following members:

m char *key— Comparison key

m void *data — Pointer to data associated with the key
The key comparison function used by hsearch is strcmp

The action argument is of type ACTION, an enumeration type which defines the following
values:

m ENTER — Insert item into the hash table. If an existing item with the same key is found, it is
not replaced. The key and data elements of item are used directly by the new table entry.
The storage for the key must not be modified during the lifetime of the hash table.

m FIND — Search the hash table without inserting item.

If successful, hsearch returns a pointer to the hash table entry matching the provided key. If
the action is FIND and the item was not found, or if the action is ENTER and the insertion failed,
NULL is returned and errno is set to indicate the error. If the action is ENTER and an entry
already exists in the table matching the given key, the existing entry is returned and is not
replaced.

11.14.4 tdelete

void tdelete(const void * restrict key, void ** restrict rootp, int
(*compar) (const void *, const void *)); [POSIX]

The function manages binary search trees based on algorithms T and D from Knuth (6.2.2).
The comparison function passed in by the user has the same style of return values as st rcmp.

The tdelete function deletes a node from the specified binary search tree and returns a
pointer to the parent of the node to be deleted. It takes the same arguments as tf£ind and
tsearch. If the node to be deleted is the root of the binary search tree, rootp will be adjusted.

tdelete returns NULL if rootp is NULL or the datum cannot be found.

80-N2040-13 Rev. D 152

Qualcomm Hexagon C Library User Guide Header files

11.14.5 tfind

void *tfind(const void *key, const void * const *rootp,
int (*compar) (const void *, const void *)); [POSIX]

The function manages binary search trees based on algorithms T and D from Knuth (6.2.2).
The comparison function passed in by the user has the same style of return values as st rcmp.

The t£ind function searches for the datum matched by the argument key in the binary tree
rooted at rootp. It returns a pointer to the datum if it is found and NULL if it is not. It also
returns NULL if rootp is NULL or the datum cannot be found.

11.14.6 tsearch

void *tsearch(const void *key, void **rootp, int (*compar)
(const void *, const void *)); [POSIX]

The function manages binary search trees based on algorithms T and D from Knuth (6.2.2).
The comparison function passed in by the user has the same style of return values as strcmp.

The tsearch function is identical to t£ind except that if no match is found, key is inserted
into the tree and a pointer to it is returned. If rootp points to a NULL value a new binary
search tree is created.

The function returns NULL if allocation of a new node fails (typically due to a lack of free
memory). It also returns NULL if rootp is NULL or the datum cannot be found.

11.14.7 twalk

void twalk (const void *root, void (*action) (const void *,
VISIT, int)); [POSIX]

The function manages binary search trees based on algorithms T and D from Knuth (6.2.2).
The comparison function passed in by the user has the same style of return values as strcmp.

The twalk function walks the binary search tree rooted in root and calls the function action on
each node. Action is called with three arguments:

m A pointer to the current node

m A value from the typedef enum {preorder, postorder, endorder, leaf }
VISIT; specifying the traversal type

m A node level (where level zero is the root of the tree)

The function has no return value.

80-N2040-13 Rev. D 153

Qualcomm Hexagon C Library User Guide Header files

11.15 <setjmp.h>
Include the standard header <setjmp.h> to perform control transfers that bypass the normal
function call and return protocol.

#define setjmp(jmp buf env) <int rvalues

typedef a-type jmp buf;

void longjmp (jmp buf env, int wval);
jmp_ buf

typedef a-type jmp buf;

The type is the array type a-type of an object that you declare to hold the context information
stored by setjmp and accessed by longjmp.

11.15.1 longjmp
void longjmp (jmp buf env, int val);

The function causes a second return from the execution of setjmp that stored the current
context value in env. If val is nonzero, the return value is val; otherwise, it is 1.

The function that was active when set jmp stored the current context value must not have
returned control to its caller. An object with dynamic duration that does not have a volatile
type and whose stored value has changed since the current context value was stored will have
a stored value that is indeterminate.

11.15.2 setjmp

#define setjmp(jmp buf env) <int rvalues

The macro stores the current context value in the array designated by env and returns zero. A
later call to 1ongjmp that accesses the same context value causes setjmp to again return, this
time with a nonzero value. You can use the macro setjmp only in an expression that:

m Has no operators
m Has only the unary operator, !

m Has one of the relational or equality operators (==, !=, <, <=, >, or >=) with the other
operand an integer constant expression

You can write such an expression only as the expression part of a do, expression, for, if, if-else,
switch, or while statement.

80-N2040-13 Rev. D 154

Qualcomm Hexagon C Library User Guide Header files

11.16 <signal.h>

Include the standard header <signal.hs to specify how the program handles signals while it
executes. A signal can report some exceptional behavior within the program, such as division
by zero. Or a signal can report some asynchronous event outside the program, such as
someone striking an interactive attention key on a keyboard.

You can report any signal by calling raise. Each implementation defines what signals it
generates (if any) and under what circumstances it generates them. An implementation can
define signals other than the ones listed here. The <signal.h> header can define additional
macros with names beginning with SIG to specify the values of additional signals. All such
values are integer constant expressions 0.

You can specify a signal handler for each signal. A signal handler is a function that the target
environment calls when the corresponding signal occurs. The target environment suspends
execution of the program until the signal handler returns or calls 1ongjmp. For maximum
portability, an asynchronous signal handler should only:

m Make calls (that succeed) to the function signal
m Assign values to objects of type volatile sig atomic t

m Return control to its caller

Furthermore, in C++, a signal handler should:
m Have extern “C” linkage

m Use only language features common to C and C++

If the signal reports an error within the program (and the signal is not asynchronous), the
signal handler can terminate by calling abort, exit, or longjmp.

/* MACROS */

#define SIGABRT <integer constant expression >= 0>
#define SIGFPE <integer constant expression >= 0>
#define SIGILL <integer constant expression >= 0>
#define SIGINT <integer constant expression >= 0>
#define SIGSEGV <integer constant expression >= 0>
#define SIGTERM <integer constant expression >= 0>
#define SIG DFL <address constant expressions>
#define SIG ERR <address constant expression>
#define SIG IGN <address constant expression>

/* TYPES */
typedef i-type sig atomic t;

/* FUNCTIONS */
int raise(int sig);
void (*signal (int sig, void (*func) (int))) (int);

80-N2040-13 Rev. D 155

Qualcomm Hexagon C Library User Guide Header files

11.16.1 raise

int raise(int sig);

The function sends the signal sig and returns zero if the signal is successfully reported.

11.16.2 sig_atomic_t
typedef i-type sig atomic t;

The type is the integer type i-type for objects whose stored value is altered by an assigning
operator as an atomic operation (an operation that never has its execution suspended while
partially completed). Declare such objects to communicate between signal handlers and the
rest of the program.

11.16.3 SIGABRT

#define SIGABRT <integer constant expression >= 0>

The macro yields the sig argument value for the abort signal.

11.16.4 SIGFPE

#define SIGFPE <integer constant expression >= 0>

The macro yields the sig argument value for the arithmetic error signal, such as for division
by zero or result out of range.

11.16.5 SIGILL

#define SIGILL <integer constant expression >= 0>

The macro yields the sig argument value for the invalid execution signal, such as for a
corrupted function image.

11.16.6 SIGINT

#define SIGINT <integer constant expression >= 0>

The macro yields the sig argument value for the asynchronous interactive attention signal.

80-N2040-13 Rev. D 156

Qualcomm Hexagon C Library User Guide Header files

11.16.7 signal

void (*signal (int sig, void (*func) (int))) (int);

The function specifies the new handling for signal sig and returns the previous handling, if
successful; otherwise, it returns SIG_ERR.

m If func is SIG DFL, the target environment commences default handling (as defined by
the implementation).

m If funcis SIG_IGN, the target environment ignores subsequent reporting of the signal.

m Otherwise, func must be the address of a function returning void that the target
environment calls with a single int argument. The target environment calls this function to
handle the signal when it is next reported, with the value of the signal as its argument.

When the target environment calls a signal handler:

m The target environment can block further occurrences of the corresponding signal until the
handler returns, calls longjmp, or calls signal for that signal.

m The target environment can perform default handling of further occurrences of the
corresponding signal.

For signal s1GILL, the target environment can leave handling unchanged for that signal.

11.16.8 SIGSEGV

#define SIGSEGV <integer constant expression >= 0>

The macro yields the sig argument value for the invalid storage access signal, such as for an
erroneous lvalue expression.

11.16.9 SIGTERM

#define SIGTERM <integer constant expression >= 0>

The macro yields the sig argument value for the asynchronous termination request signal.

11.16.10SIG_DFL

#define SIG DFL <address constant expressions>

The macro yields the func argument value to signal to specify default signal handling.

80-N2040-13 Rev. D 157

Qualcomm Hexagon C Library User Guide Header files

11.16.11SIG_ERR

#define SIG ERR <address constant expression>

The macro yields the signal return value to specify an erroneous call.

11.16.12SIG_IGN

#define SIG IGN <address constant expression>

The macro yields the func argument value to signal to specify that the target environment is
to henceforth ignore the signal.

80-N2040-13 Rev. D 158

Qualcomm Hexagon C Library User Guide Header files

11.17 <stdarg.h>

Include the standard header <stdarg.h> to access the unnamed additional arguments (that
have no corresponding parameter declarations) in a function that accepts a varying number of
arguments. To access the additional arguments:

m The program must first execute the macro va_start within the body of the function to
initialize an object with context information.

m Subsequent execution of the macro va_arg, designating the same context information,
yields the values of the additional arguments in order, beginning with the first unnamed
argument. You can execute the macro va_arg from any function that can access the
context information saved by the macro va_start.

m Ifyou executed the macro va_start in a function, you must execute the macro va_end in
the same function, designating the same context information, before the function returns.

You can repeat this sequence (as needed) to access the arguments as often as you want.

Declare an object of type va_1ist to store context information. va_1list can be either an
array type or a non-array type. Thus, you cannot reliably assign one such object to another—
use the macro va_copy instead.

Whether va_1list is an array type affects how the program shares context information with
functions that it calls. The address of the first element of an array is passed, rather than the
object itself. So an array type is effectively passed by reference, while a non-array type is
passed by value.

For example:

#include <stdarg.h>

void va_cat (char *s, ...)
{
char *t;
va_list ap;

va_start (ap, s);

while (t = va_arg(ap, char *)) NULL pointer ends list
{
s += strlen(s); skip to end
strcpy (s, t); and copy a string

}

va_end (ap) ;

}

The function va_cat concatenates an arbitrary number of strings onto the end of an existing
string (assuming that the existing string is stored in an object large enough to hold the resulting
string).

#define va_arg(va_list ap, Ty) <rvalue of type Ty>

#define va copy(va list dest, va list src) <void expression> [Added with
C99]

#define va_end(va_list ap) <void expression>

#define va_start(va_list ap, last-par) <void expression>

typedef do-type va list;

80-N2040-13 Rev. D 159

Qualcomm Hexagon C Library User Guide Header files

11.17.1 va_arg

#define va arg(va_list ap, Ty) <rvalue of type Ty>

The macro yields the value of the next argument in order, specified by the context information
designated by ap. The additional argument must be of object type Ty after applying the rules
for promoting arguments in the absence of a function prototype.

11.17.2 va_copy

#define va_copy(va list dest, va_list src) <void expression> [Added with
C99]

The macro copies the context information designated by src to the object designated by dest.
It does so whether va_1ist is an array type.

11.17.3 va_end

#define va end(va_list ap) <void expression>

The macro performs any cleanup necessary, after processing the context information
designated by ap, so that the function can return.

11.17.4 va_list

typedef do-type va list;

The type is the object type do- type that you declare to hold the context information initialized
by va_start and used by va_arg to access additional unnamed arguments.

11.17.5 va_start

#define va start(va_list ap, last-par) <void expression>

The macro stores initial context information in the object designated by ap. 1ast-par is the
name of the last parameter you declare. For example, last-par is b for the function declared
as int f(int a, int b, ...).The last parameter must not have register storage class, and
it must have a type that is not changed by the translator. It cannot have:

m An array type

m A function type

m Type float

m Any integer type that changes when promoted

m A reference type [C++ only]

80-N2040-13 Rev. D 160

Qualcomm Hexagon C Library User Guide Header files

11.18 <stdbool.h>

[Added with C99]

Include the standard header <stdbool . h> to define a type and several macros suitable for
writing Boolean tests. This header is available even in a freestanding implementation.

/* MACROS */

#define bool Bool [Keyword in C++]
#define false 0 [Keyword in C++]

#define true 1 [Keyword in C++]

#define _ bool_true false are defined 1

/* TYPES */
typedef i-type bool; [Keyword in C++]
bool true false are defined

Eefine __bool true false are defined 1

The macro yields the decimal constant 1.

11.18.1 bool

#define bool Bool [Keyword in C++]

The macro yields the type Bool.

11.18.2 false
#define false 0 [Keyword in C++]

The macro yields the decimal constant 0.

11.18.3 true

#define true 1 [Keyword in C++]

The macro yields the decimal constant 1.

80-N2040-13 Rev. D 161

Qualcomm Hexagon C Library User Guide Header files

11.19 <stddef.h>

Include the standard header <stddef . h> to define several types and macros that are of general
use throughout the program. This header is available even in a freestanding implementation.

/* MACROS */
#define NULL <either 0, 0L, or (void *)0> [0in C++]
#define offsetof (s-type, mbr) <size t constant expressions>

/* TYPES */
typedef si-type ptrdiff t;

typedef ui-type size t;
typedef i-type wchar t; [Keyword in C++]

11.19.1 NULL

#define NULL <either 0, 0L, or (void *)0> [0in C++]

The macro yields a NULL pointer constant that is usable as an address constant expression.

11.19.2 offsetof

#define offsetof (s-type, mbr) <size t constant expression>

The macro yields the offset in bytes, of type size t, of member mbr from the beginning of
structure type s-type, where for X of type s-type, &X.mbr is an address constant expression.

11.19.3 ptrdiff_t

typedef si-type ptrdiff t;

The type is the signed integer type si-type of an object that you declare to store the result of
subtracting two pointers.

11.19.4 size_t

typedef ui-type size t;

The type is the unsigned integer type ui-type of an object that you declare to store the result
of the sizeof operator.

11.19.5 wchar_t

typedef i-type wchar t; [Keyword in C++]

The type is the integer type i-type of a wide-character constant, such as L.'x'. Declare an
object of type wchar tto hold a wide character.

80-N2040-13 Rev. D 162

Qualcomm Hexagon C Library User Guide

Header files

11.20 <stdint.h>

[Added with C99]

Include the standard header <stdint . h> to define various integer types, and related macros,

with size constraints.

The definitions shown for the types and macros are merely representative—they can vary

among implementations.

/* TYPE DEFINITIONS */

typedef signed char int8 t;

typedef short intlé t;

typedef long int32 t;

typedef long long inté64 t;

typedef unsigned char uint8 t;

typedef unsigned short uintlé_t;
typedef unsigned long uint32 t;
typedef unsigned long long uinté4 t;
typedef signed char int least8 t;
typedef short int leastlé t;

typedef long int least32 t;

typedef long long int leasté64 t;
typedef unsigned char uint least8 t;
typedef unsigned short uint leastl6 t;
typedef unsigned long uint least32 t;
typedef unsigned long long uint leasté64 t;
typedef signed char int fast8 t;
typedef short int fastlé t;

typedef long int fast32 t;

typedef long long int faste64 t;
typedef unsigned char uint fast8 t;
typedef unsigned short uint fastlé t;
typedef unsigned long uint fast32 t;
typedef unsigned long long uint fasté64 t;
typedef long intptr t;

typedef unsigned long uintptr t;
typedef long long intmax t;

typedef unsigned long long uintmax t;

/* LIMIT MACROS */

#define INT8 MIN (-0x7f - 1)

#define INT16 MIN (-0x7fff - 1)

#define INT32 MIN (-Ox7fffffff - 1)

#define INT64 MIN (-Ox7fffffffffffffff - 1)
#define INT8 MAX 0x7f [exact]

#define INT16_MAX O0x7fff [exact]

#define INT32 MAX Ox7fffffff [exact]

#define INT64 MAX Ox7Efffffffffffffff [exact]
#define UINT8 MAX Oxff [exact]

#define UINT16 MAX Oxffff [exact]

#define UINT32 MAX Oxffffffff [exact]
#define UINT64 MAX OxEfffffffffffffff [exact]
#define INT LEAST8 MIN (-0x7f - 1)

#define INT LEAST16 MIN (-O0x7fff - 1)
#define INT LEAST32 MIN (-Ox7fffffff - 1)

80-N2040-13 Rev. D

163

Qualcomm Hexagon C Library User Guide Header files

#define INT LEAST64_MIN (-Ox7fffffffffffffff - 1)
#define INT LEAST8 MAX 0x7f

#define INT LEAST16 MAX Ox7fff

#define INT LEAST32 MAX Ox7fffffff

#define INT LEAST64 MAX Ox7fffffffffffffff
#define UINT LEAST8 MAX Oxff

#define UINT LEAST16 MAX Oxffff

#define UINT LEAST32 MAX Oxffffffff

#define UINT LEAST64 MAX Oxffffffffffffffff
#define INT FAST8 MIN (-0x7f - 1)

#define INT FAST16 MIN (-0x7fff - 1)
#define INT FAST32 MIN (-Ox7fffffff - 1)
#define INT FAST64_MIN (-Ox7fffffffffffffff - 1)
#define INT FAST8 MAX O0x7f

#define INT FAST16 MAX Ox7fff

#define INT FAST32 MAX Ox7fffffff

#define INT FAST64 MAX Ox7fffffffffffffff
#define UINT FAST8 MAX Oxff

#define UINT FAST16 MAX Oxffff

#define UINT FAST32 MAX Oxffffffff

#define UINT FAST64 MAX Oxffffffffffffffff
#define INTPTR_MIN (-Ox7fffffff - 1)
#define INTPTR MAX Ox7fffffff

#define UINTPTR MAX Oxffffffff

#define INT8 C(x) (x)

#define INT16 C(x) (x)

#define INT32 C(x) ((x) + (INT32 MAX - INT32 MAX))
#define INT64 C(x) ((x) + (INT64 MAX - INT64 MAX))
#define UINT8 C(x) (x)

#define UINT16_ C(x) (x)

#define UINT32 C(x) ((x) + (UINT32 MAX - UINT32 MAX))
#define UINT64 C(x) ((x) + (UINT64 MAX - UINT64 MAX))
#define INTMAX C(x) ((x) + (INT64 MAX - INT64 MAX))
#define UINTMAX C(x) ((x) + (UINT64 MAX - UINT64 MAX))

#define PTRDIFF_MIN INT32 MIN

#define PTRDIFF MAX INT32 MAX

#define SIG ATOMIC MIN INT32 MIN
#define SIG ATOMIC MAX INT32 MAX
#define SIZE MAX UINT32 MAX

#define WCHAR MIN 0

#define WCHAR MAX UINT16 MAX

#define WINT MIN O

#define WINT MAX UINT16 MAX

#define INTMAX MIN (-Ox7fffffffffffffff - 1)
#define INTMAX MAX Ox7fffffffffffffff
#define UINTMAX MAX Oxffffffffffffffff

80-N2040-13 Rev. D 164

Qualcomm Hexagon C Library User Guide Header files

11.20.1

11.20.2

11.20.3

11.20.4

INT8_C, INT16_C, INT32_C, INT64_C

#define INT8 C(x) (x)

#define INT16 C(x) (x)
#define INT32 C(x) ((x)
#define INT64 C(x) ((x)

(INT32 MAX - INT32 MAX))

+
+ (INT64 MAX - INT64 MAX))

The macros each convert an integer literal to a signed integer type whose representation has at

least 8, 16, 32, or 64 bits, respectively.

The definitions shown here are merely representative.

INT8_MAX, INT16_MAX, INT32_MAX, INT64_MAX

#define INT8 MAX 0x7f [exact]

#define INT16 MAX O0x7fff [exact]

#define INT32 MAX Ox7fffffff [exact]

#define INT64 MAX Ox7fffffffffffffff [exact]

The macros each expand to an #1f expression that yields the maximum value representable as
type int8 t, intlé t, int32 t, or int64 t, respectively.

The definitions shown here are exact.

INT8_MIN, INT16_MIN, INT32_MIN, INT64_MIN

#define INT8 MIN (-0x7f - 1)

#define INT16 MIN (-Ox7fff - 1)

#define INT32 MIN (-Ox7fffffff - 1)

#define INT64 MIN (-Ox7fffffffffffffff - 1)

The macros each expand to an #if expression that yields the minimum value representable as
type int8 t, intlé t,int32 t, or int64 t, respectively.

The definitions shown here are merely representative.

int8_t, int16_t, int32_t, int64_t

typedef signed char int8 t;
typedef short intlé t;
typedef long int32 t;
typedef long long int64 t;

The types each specify a signed integer type whose representation has exactly 8, 16, 32, or 64
bits, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 165

Qualcomm Hexagon C Library User Guide Header files

11.20.5

11.20.6

11.20.7

11.20.8

INT_FAST8_MAX, INT_FAST16_MAX, INT_FAST32_MAX,
INT_FAST64_MAX

#define INT FAST8 MAX 0x7f

#define INT FAST16 MAX Ox7fff

#define INT FAST32 MAX Ox7fffffff
#define INT FAST64 MAX Ox7fffffffffffffff

The macros each expand to an #if expression that yields the maximum value representable as
type int fast8 t,int fastlé t,int fast32 t, or int fast64 t, respectively.

The definitions shown here are merely representative.

INT_FAST8_MIN, INT_FAST16_MIN, INT_FAST32_MIN,
INT_FAST64_MIN

#define INT FAST8 MIN (-0x7f - 1)

#define INT FAST16 MIN (-0x7fff - 1)

#define INT FAST32 MIN (-Ox7fffffff - 1)
#define INT FAST64 MIN (-Ox7fffffffffffffff - 1)

The macros each expand to an #if expression that yields the minimum value representable as
type int fast8 t, int fastlé t,int fast32 t,or int fasté64 t,respectively.

The definitions shown here are merely representative.

int_fast8_t, int_fast16_t, int_fast32_t, int_fast64_t

typedef signed char int fast8 t;
typedef short int fastlé t;
typedef long int fast32 t;
typedef long long int fasté64 t;

The types each specify a signed integer type that supports the fastest operations among those
whose representation has at least 8, 16, 32, or 64 bits, respectively.

The definitions shown here are merely representative.

INT_LEAST8_MAX, INT_LEAST16_MAX, INT_LEAST32_MAX,
INT_LEAST64_MAX

#define INT LEAST8 MAX O0x7f

#define INT LEAST16 MAX Ox7fff

#define INT LEAST32 MAX Ox7fffffff
#define INT LEAST64 MAX Ox7fffffffffffffff

The macros each expand to an #1f expression that yields the maximum value representable as
type int_least8 t, int leastl6 t, int least32 t,Or int least64_t, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 166

Qualcomm Hexagon C Library User Guide Header files

11.20.9 INT_LEASTS_MIN, INT_LEAST16_MIN, INT_LEAST32_MIN,
INT_LEAST64_MIN

#define INT LEAST8 MIN (-0x7f - 1)

#define INT LEAST16 MIN (-Ox7fff - 1)

#define INT LEAST32 MIN (-Ox7fffffff - 1)

#define INT LEAST64 MIN (-Ox7fffffffffffffff - 1)

The macros each expand to an #if expression that yields the minimum value representable as
type int _least8 t, int leastl6 t,int least32 t,Or int least64 t, respectively.

The definitions shown here are merely representative.

11.20.10int_least8_t, int_least16_t, int_least32_t, int_least64 _t

typedef signed char int least8 t;
typedef short int leastl6 t;
typedef long int least32 t;
typedef long long int least64 t;

The types each specify a signed integer type whose representation has at least 8, 16, 32, or 64
bits, respectively.

The definitions shown here are merely representative.

11.20.11INTMAX_C

#define INTMAX C(x) ((x) + (INT64 MAX - INT64 MAX))
The macro converts an integer literal to the largest signed integer type.

The definition shown here is merely representative.

11.20.12INTMAX_MAX

#define INTMAX MAXOx7fffffffffffffff

The macro expands to an #i £ expression that yields the maximum value representable as type
intmax t.

The definition shown here is merely representative.

11.20.13INTMAX_MIN
#define INTMAX MIN (-Ox7fffffffffffffff - 1)

The macro expands to an #1i £ expression that yields the minimum value representable as type
intmax t.

The definition shown here is merely representative.

80-N2040-13 Rev. D 167

Qualcomm Hexagon C Library User Guide Header files

11.20.14intmax_t

typedef long long intmax t;
The type specifies the largest signed integer type.

The definition shown here is merely representative.

11.20.15INTPTR_MAX

#define INTPTR MAXOx7fffffff

The macro expands to an #if expression that yields the maximum value representable as type
intptr t.

The definition shown here is merely representative.

11.20.16INTPTR_MIN

#define INTPTR_MIN(-Ox7fffffff - 1)

The macro expands to an #if expression that yields the minimum value representable as type
intptr t.

The definition shown here is merely representative.

11.20.17intptr_t

typedef long intptr t;

The type specifies a signed integer type large enough to support interconversion with a void
pointer. (You can convert a void pointer to intptr_t and back, and the result compares equal
to the original pointer value.) The definition shown here is merely representative.

11.20.18PTRDIFF_MAX

#define PTRDIFF MAX INT32 MAX

The macro expands to an #if expression that that yields the maximum value representable as
type ptrdiff t.

The definition shown here is merely representative.

80-N2040-13 Rev. D 168

Qualcomm Hexagon C Library User Guide Header files

11.20.19PTRDIFF_MIN

#define PTRDIFF_MIN INT32 MIN

The macro expands to an #if expression that yields the minimum value representable as type
ptrdiff t.

The definition shown here is merely representative.

11.20.20SIG_ATOMIC_MAX

#define SIG ATOMIC MAX INT32 MAX

The macro expands to an #if expression that yields the maximum value representable as type
sig atomic_ t.

The definition shown here is merely representative.

11.20.21SIG_ATOMIC_MIN

#define SIG ATOMIC MIN INT32 MIN

The macro expands to an #1i £ expression that yields the minimum value representable as type
sig atomic_t.

The definition shown here is merely representative.

11.20.22SIZE_MAX

#define SIZE MAX UINT32 MAX

The macro expands to an #i £ expression that yields the maximum value representable as type
size t.

The definition shown here is merely representative.

11.20.23UINT8_C, UINT16_C, UINT32_C, UINT64_C

#define UINT8_C(x) (x)
#define UINT16_C(x) (x)
#define UINT32 C(x) ((x) + (UINT32 MAX - UINT32 MAX))
#define UINT64_ C(x) ((x) + (UINT64_MAX - UINT64_ MAX))

The macros each convert an integer literal to an unsigned integer type whose representation
has at least 8, 16, 32, or 64 bits, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 169

Qualcomm Hexagon C Library User Guide Header files

11.20.24UINT8_MAX, UINT16_MAX, UINT32_MAX, UINT64_MAX

#define UINT8 MAX Oxff [exact]

#define UINT16 MAX Oxffff [exact]

#define UINT32 MAX Oxffffffff [exact]

#define UINT64 MAX Oxffffffffffffffff [exact]

The macros each expand to an #1f expression that yields the maximum value representable as
type uint8_t, uintl6_t, uint32_t, or uint64_t, respectively.

The definitions shown here are exact.

11.20.25uint8_t, uint16_t, uint32_t, uint64_t

typedef unsigned char uint8 t;
typedef unsigned short uintlé t;
typedef unsigned long uint32 t;
typedef unsigned long long uinté64 t;

The types each specify an unsigned integer type whose representation has exactly 8, 16, 32, or
64 bits, respectively.

The definitions shown here are merely representative.

11.20.26UINT_FAST8_MAX, UINT_FAST16_MAX, UINT_FAST32_MAX,
UINT_FAST64_MAX

#define UINT FAST8 MAX Oxff

#define UINT FAST16 MAX Oxffff

#define UINT FAST32 MAX Oxffffffff

#define UINT FAST64 MAX Oxffffffffffffffff

The macros each expand to an #1if expression that yields the maximum value representable as
type uint_fast8 t, uint fastl6 t, uint fast32 t, or uint fast64 t, respectively.

The definitions shown here are merely representative

11.20.27uint_fast8 _t, uint_fast16_t, uint_fast32_t, uint_fast64 t

typedef unsigned char uint fast8 t;
typedef unsigned short uint fastlé t;
typedef unsigned long uint fast32 t;
typedef unsigned long long uint fast64 t;

The types each specify an unsigned integer type that supports the fastest operations among
those whose representation has at least 8, 16, 32, or 64 bits, respectively.

The definitions shown here are merely representative.

80-N2040-13 Rev. D 170

Qualcomm Hexagon C Library User Guide Header files

11.20.28UINT_LEAST8_MAX, UINT_LEAST16_MAX,
UINT_LEAST32_MAX, UINT_LEAST64_MAX

#define UINT LEAST8 MAX Oxff

#define UINT LEAST16 MAX Oxffff

#define UINT LEAST32 MAX Oxffffffff

#define UINT LEAST64 MAX Oxffffffffffffffff

The macros each expand to an #if expression that yields the maximum value representable as
type uint_least8 t, uint least16 t, uint least32 t, or uint least64 t, respectively.

The definitions shown here are merely representative

11.20.29uint_least8_t, uint_least16_t, uint_least32_t, uint_least64 _t

typedef unsigned char uint least8 t;
typedef unsigned short uint leastl6 t;
typedef unsigned long uint least32 t;
typedef unsigned long long uint least64 t;

The types each specify an unsigned integer type whose representation has at least 8, 16, 32, or
64 bits, respectively.

The definitions shown here are merely representative.

11.20.30UINTMAX_C

#define UINTMAX C(x) ((x) + (UINT64 MAX - UINT64 MAX))
The macro converts an unsuffixed integer literal to the largest unsigned integer type.

The definition shown here is merely representative.

11.20.31UINTMAX_MAX

#define UINTMAX MAX Oxffffffffffffffff

The macro expands to an #i £ expression that yields the maximum value representable as type
uintmax t.

The definition shown here is merely representative.

11.20.32uintmax_t

typedef unsigned long long uintmax_t;
The type specifies the largest unsigned integer type.

The definition shown here is merely representative.

80-N2040-13 Rev. D 171

Qualcomm Hexagon C Library User Guide Header files

11.20.33UINTPTR_MAX

#define UINTPTR MAX Oxffffffff

The macro expands to an #i £ expression that yields the maximum value representable as type
uintptr t.

The definition shown here is merely representative.

11.20.34uintptr_t

typedef unsigned long uintptr t;

The type specifies an unsigned integer type large enough to support interconversion with a
void pointer. (You can convert a void pointer to uintptr t and back, and the result compares
equal to the original pointer value.) The definition shown here is merely representative.

11.20.35WCHAR_MAX

#define WCHAR MAX UINT1l6_ MAX

The macro expands to an #i £ expression that yields the maximum value representable as type
wchar t.

The definition shown here is merely representative.

11.20.36WCHAR_MIN

#define WCHAR MIN 0

The macro expands to an #1i £ expression that yields the minimum value representable as type
wchar t.

The definition shown here is merely representative.

11.20.37WINT_MAX

#define WINT MAX UINT16 MAX

The macro expands to an #i £ expression that yields the maximum value representable as type
wint t.

The definition shown here is merely representative.

80-N2040-13 Rev. D 172

Qualcomm Hexagon C Library User Guide Header files

11.20.38WINT_MIN

#define WINT MIN O

The macro expands to an #if expression that yields the minimum value representable as type
wint t.

The definition shown here is merely representative.

80-N2040-13 Rev. D 173

Qualcomm Hexagon C Library User Guide Header files

11.21 <stdio.h>

Include the standard header <stdio.h> so that you can perform input and output operations
on streams and files.

/* MACROS */

#define TIOFBF <integer constant expressions>

#define TIOLBF <integer constant expressions>

#define IONBF <integer constant expressions>

#define BUFSIZ <integer constant expression >= 256>
#define EOF <integer constant expression < 0>
#define FILENAME MAX <integer constant expression > 0>
#define FOPEN MAX <integer constant expression >= 8>
#define L tmpnam <integer constant expression > 0>
#define NULL <either 0, OL, or (void *)0> [0in C++]
#define SEEK CUR <integer constant expression>
#define SEEK END <integer constant expression>
#define SEEK SET <integer constant expression>
#define TMP_MAX <integer constant expression >= 25>
#define stderr <pointer to FILE rvalue>

#define stdin <pointer to FILE rvalue>

#define stdout <pointer to FILE rvalue>

/* TYPES */ typedef o-type FILE;
typedef o-type fpos t;
typedef ui-type size t;

/* FUNCTIONS */

void clearerr (FILE *stream) ;

int fclose(FILE *stream) ;

int feof (FILE *stream) ;

int ferror (FILE *stream) ;

int fflush(FILE *stream) ;

FILE *fopen(const char *restrict filename, const char *restrict mode) ;
FILE *freopen(const char *restrict filename, const char *restrict
mode, FILE *stream) ;

int remove (const char *filename) ;

int rename (const char *old, const char *new) ;

void rewind (FILE *stream) ;

void setbuf (FILE *restrict stream, char *restrict buf);

int setvbuf (FILE *restrict stream, char *restrict buf, int mode,
size t size);

FILE *tmpfile (void) ;

char *tmpnam(char *s);

int fseek (FILE *stream, long offset, int mode) ;

int fseeko(FILE *stream, off t offset, int whence); [POSIX]

off t ftello(FILE *stream); [POSIX]

int fsetpos (FILE *stream, const fpos t *pos);

int fgetpos (FILE *restrict stream, fpos t *restrict pos);

long ftell (FILE *stream) ;

int fgetc (FILE *stream) ;

char *fgets(char *restrict s, int n, FILE *restrict stream);
size t fread(void *restrict ptr, size t size, size t nelem, FILE
*regtrict stream) ;

int getc(FILE *stream) ;

int getchar (void) ;

80-N2040-13 Rev. D 174

Qualcomm Hexagon C Library User Guide Header files

int getc unlocked (FILE *stream); [POSIX]

int getchar unlocked (void); [POSIX]

char *gets(char *s);

int ungetc(int ¢, FILE *stream) ;

int fputc(int ¢, FILE *stream);

int fputs(const char *restrict s, FILE *restrict stream);

size_t fwrite(const void *restrict ptr, size t size, size t nelem,

FILE *restrict stream) ;

void perror (const char *s);

int putc(int ¢, FILE *stream);

int putchar (int c);

int putc_unlocked(int ¢, FILE *stream); [POSIX]

int putchar unlocked(int c¢); [POSIX]

int puts(const char *s);

int fscanf (FILE *restrict stream, const char *restrict format, ...);

int scanf (const char *restrict format, ...);

int sscanf (const char *restrict s, const char *restrict format, ...);

int vfscanf (FILE *restrict stream, const char *restrict format,

va_list ap); [Added with C99]

int vscanf (const char *restrict format, va list ap); [Added with C99]

int vsscanf (const char *restrict s, const char *restrict format,

va_list ap); [Added with C99]

int fprintf (FILE *restrict stream, const char *restrict format, ...);

int printf (const char *restrict format, ...);

int snprintf (char *restrict s, size t n, const char *restrict format,
.); [Added with C99]

int sprintf (char *restrict s, const char *restrict format, ...);

int vfprintf (FILE *restrict stream, const char *restrict format,

va_list ap);

int vprintf (const char *restrict format, va list ap);

int vsnprintf (char *restrict s, size t n, const char *restrict format,

va_list ap); [Added with C99]

int vsprintf (char *restrict s, const char *restrict format, va list

ap) ;

11.21.1 BUFSIZ

#define BUFSIZ <integer constant expression >= 256>

The macro yields the size of the stream buffer used by setbuf.

11.21.2 clearerr
void clearerr (FILE *stream) ;

The function clears the end-of-file and error indicators for the stream stream.

80-N2040-13 Rev. D 175

Qualcomm Hexagon C Library User Guide Header files

11.21.3 EOF

#define EOF <integer constant expression < 0>

The macro yields the return value used to signal the end of a stream or to report an error
condition.

11.21.4 fclose

int fclose(FILE *stream) ;

The function closes the file associated with the stream stream. It returns zero if successful;
otherwise, it returns EOF.

This function writes any buffered output to the file, deallocates the stream buffer if it was
automatically allocated, and removes the association between the stream and the file. Do not
use the value of stream in subsequent expressions.

11.21.5 feof

int feof (FILE *stream) ;

The function returns a nonzero value if the end-of-file indicator is set for the stream stream.

11.21.6 ferror

int ferror (FILE *stream) ;

The function returns a nonzero value if the error indicator is set for the stream stream.

11.21.7 fflush

int fflush(FILE *stream) ;

The function writes any buffered output to the file associated with the stream stream and
returns zero if successful; otherwise, it returns EOF.

If stream is a NULL pointer, this function writes any buffered output to all files opened for
output.

11.21.8 fgetc

int fgetc(FILE *stream) ;

The function reads the next character ¢ (if present) from the input stream stream, advances
the file-position indicator (if defined), and returns (int) (unsigned char) c. If the function
sets either the end-of-file indicator or the error indicator, it returns EOF.

80-N2040-13 Rev. D 176

Qualcomm Hexagon C Library User Guide Header files

11.21.9 fgetpos

int fgetpos (FILE *restrict stream, fpos t *restrict pos);

The function stores the file-position indicator for the stream stream in *pos and returns zero
if successful; otherwise, the function stores a positive value in errno and returns a nonzero
value.

11.21.10fgets

char *fgets(char *restrict s, int n, FILE *restrict stream);

The function reads characters from the input stream stream and stores them in successive
elements of the array beginning at s and continuing until it stores n-1 characters, stores an NL
character, or sets the end-of-file or error indicators. If this function stores any characters, it
concludes by storing a NULL character in the next element of the array.

The function returns s if it stores any characters and it has not set the error indicator for the
stream; otherwise, it returns a NULL pointer. If it sets the error indicator, the array contents are
indeterminate.

11.21.11FILE

typedef o-type FILE;

The type is an object type o-type that stores all control information for a stream. The
functions fopen and freopen allocate all FILE objects used by the read and write functions.

11.21.12FILENAME_MAX

#define FILENAME MAX <integer constant expression > 0>

The macro yields the maximum size array of characters that you must provide to hold a
filename.

80-N2040-13 Rev. D 177

Qualcomm Hexagon C Library User Guide Header files

11.21.13fopen

FILE *fopen(const char *restrict filename, const char *restrict mode) ;

The function opens the file with the filename f£ilename, associates it with a stream, and
returns a pointer to the object controlling the stream. If the open fails, it returns a NULL
pointer. The initial characters of mode determine how the program manipulates the stream
and whether it interprets the stream as text or binary. The initial characters must be one of the
following sequences:

nrn — To open an existing text file for reading.
"wn — To create a text file or to open and truncate an existing text file, for writing.

na" — To create a text file or to open an existing text file, for writing. The file-position
indicator is positioned at the end of the file before each write.

"rb" — To open an existing binary file for reading.
"wb" — To create a binary file or to open and truncate an existing binary file, for writing.

"ab" — To create a binary file or to open an existing binary file, for writing. The file-
position indicator is positioned at the end of the file (possibly after arbitrary NULL byte
padding) before each write.

"r+ —To open an existing text file for reading and writing.

"w+" — To create a text file or to open and truncate an existing text file, for reading and
writing.

"a+" — To create a text file or to open an existing text file, for reading and writing. The
file-position indicator is positioned at the end of the file before each write.

"r+b" or "rb+" — To open an existing binary file for reading and writing.

"w+b" or "wb+" — To create a binary file or to open and truncate an existing binary file, for
reading and writing.

"a+b" or "ab+" — To create a binary file or to open an existing binary file, for reading and
writing. The file-position indicator is positioned at the end of the file (possibly after
arbitrary NULL byte padding) before each write.

If you open a file for both reading and writing, the target environment can open a binary file
instead of a text file. If the file is not interactive, the stream is fully buffered.

80-N2040-13 Rev. D 178

Qualcomm Hexagon C Library User Guide Header files

11.21.14FOPEN_MAX

#define FOPEN MAX <integer constant expression >= 8>

The macro yields the maximum number of files that the target environment permits to be
simultaneously open (including stderr, stdin, and stdout).

11.21.15fpos_t

typedef o-type fpos t;

The type is an object type o-type of an object that you declare to hold the value of a file-
position indicator stored by fsetpos and accessed by fgetpos.

11.21.16fprintf

int fprintf (FILE *restrict stream, const char *restrict format, ...);

The function generates formatted text, under the control of the format format and any
additional arguments, and writes each generated character to the stream stream. It returns the
number of characters generated, or it returns a negative value if the function sets the error
indicator for the stream.

11.21.17fputc

int fputc(int ¢, FILE *stream);

The function writes the character (unsigned char) c to the output stream stream, advances
the file-position indicator (if defined), and returns (int) (unsigned char) c. If the function
sets the error indicator for the stream, it returns EOF.

11.21.18fputs

int fputs(const char *restrict s, FILE *restrict stream);

The function accesses characters from the C string s and writes them to the output stream
stream. The function does not write the terminating NULL character. It returns a non-
negative value if it has not set the error indicator; otherwise, it returns EOF.

80-N2040-13 Rev. D 179

Qualcomm Hexagon C Library User Guide Header files

11.21.19fread

size t fread(void *restrict ptr, size t size, size t nelem, FILE
*regstrict stream) ;

The function reads characters from the input stream stream and stores them in successive
elements of the array whose first element has the address (char *)ptr until the function
stores size*nelem characters or sets the end-of-file or error indicator.

It returns n/size, where n is the number of characters it read. If n is not a multiple of size, the
value stored in the last element is indeterminate. If the function sets the error indicator, the
file-position indicator is indeterminate.

11.21.20freopen

FILE *freopen(const char *restrict filename, const char *restrict
mode, FILE *stream) ;

The function closes the file associated with the stream stream (as if by calling £close); then
it opens the file with the filename £ilename and associates the file with the stream stream
(as if by calling fopen (filename, mode)).

The function returns stream if the open is successful; otherwise, it returns a NULL pointer.

11.21.21fscanf

int fscanf (FILE *restrict stream, const char *restrict format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned character from the stream stream.

The function returns the number of input items matched and assigned, or it returns EOF if the
function does not store values before it sets the end-of-file or error indicator for the stream.

80-N2040-13 Rev. D 180

Qualcomm Hexagon C Library User Guide Header files

11.21.22fseek

int fseek (FILE *stream, long offset, int mode) ;

The function sets the file-position indicator for the stream stream (as specified by of fset
and mode), clears the end-of-file indicator for the stream, and returns zero if successful.

For a binary stream, of fset is a signed offset in bytes:

m [f mode has the value SEEK_SET, £seek adds offset to the file-position indicator for the
beginning of the file.

m If mode has the value SEEK CUR, fseek adds offset to the current file-position indicator.

m If mode has the value SEEK END, fseek adds offset to the file-position indicator for the
end of the file (possibly after arbitrary NULL character padding).

fseek sets the file-position indicator to the result of this addition.

For a text stream:

m If mode has the value SEEK SET, fseek sets the file-position indicator to the value
encoded in offset, which is either a value returned by an earlier successful call to ftell or
zero to indicate the beginning of the file.

m [fmode has the value SEEK_CUR and offset is zero, £seek leaves the file-position indicator
at its current value.

m Ifmode has the value SEEK_END and offset is zero, £seek sets the file-position indicator to
indicate the end of the file.

The function defines no other combination of argument values.

11.21.23fseeko

int fseeko(FILE *stream, off t offset, int whence); [POSIX]

The function is identical to £seek, except that the offset argument is of type of £_t.

11.21.24fsetpos

int fsetpos (FILE *stream, const fpos t *pos);

The function sets the file-position indicator for the stream stream to the value stored in *pos,
clears the end-of-file indicator for the stream, and returns zero if successful. Otherwise, the
function stores a positive value in errno and returns a nonzero value.

80-N2040-13 Rev. D 181

Qualcomm Hexagon C Library User Guide Header files

11.21.25ftell

long ftell (FILE *stream) ;

The function returns an encoded form of the file-position indicator for the stream stream or
stores a positive value in errno and returns the value -1.

m Forabinary file, a successful return value gives the number of bytes from the beginning of
the file.

m For atext file, target environments can vary on the representation and range of encoded
file-position indicator values.

11.21.26ftello
off t ftello(FILE *stream); [POSIX]

The function is identical to ftell, except that the return value type is of £_t.

11.21.27fwrite

size_t fwrite(const void *restrict ptr, size t size, size t nelem,
FILE *gstream) ;

The function writes characters to the output stream stream, accessing values from successive
elements of the array whose first element has the address (char *)ptr until the function
writes size*nelem characters or sets the error indicator.

It returns n/size, where n is the number of characters it wrote. If the function sets the error
indicator, the file-position indicator is indeterminate.

11.21.28getc

int getc(FILE *stream) ;

The function has the same effect as fgetc (stream) except that a macro version of getc can
evaluate stream more than once.

11.21.29getc_unlocked

int getc _unlocked(FILE *stream); [POSIX]

The function provide functionality identical to that of getc but does not perform implicit
locking of the streams it operates on. In multi-threaded programs, it can be used only within a
scope in which the stream has been successfully locked by the calling thread.

80-N2040-13 Rev. D 182

Qualcomm Hexagon C Library User Guide Header files

11.21.30getchar

int getchar (void) ;

The function has the same effect as fgetc (stdin), reading a character from the stream
stdin

11.21.31getchar_unlocked
int getchar unlocked (void); [POSIX]

The function provide functionality identical to that of getchar but does not perform implicit
locking of the streams it operates on. In multi-threaded programs, it can be used only within a
scope in which the stream has been successfully locked by the calling thread.

11.21.32gets

char *gets(char *s);

The function reads characters from the stream stdin and stores them in successive elements
of the array whose first element has the address s until the function reads an NL character
(which is not stored) or sets the end-of-file or error indicator. If get s reads any characters, it
concludes by storing a NULL character in the next element of the array.

It returns s if it reads any characters and has not set the error indicator for the stream;
otherwise, it returns a NULL pointer.

If it sets the error indicator, the array contents are indeterminate. The number of characters that
gets reads and stores cannot be limited. Use fgets instead.

11.21.33_IOFBF

#define IOFBF <integer constant expression>

The macro yields the value of the mode argument to setvbuf to indicate full buffering. (Flush
the stream buffer only when it fills.)

11.21.34_IOLBF

#define IOLBF <integer constant expression>

The macro yields the value of the mode argument to setvbuf to indicate line buffering. (Flush
the stream buffer at the end of a text line.)

80-N2040-13 Rev. D 183

Qualcomm Hexagon C Library User Guide Header files

11.21.35_IONBF

#define IONBF <integer constant expression>

The macro yields the value of the mode argument to setvbuf to indicate no buffering. (Flush
the stream buffer at the end of each write operation.)

11.21.36L_tmpnam

#define L tmpnam <integer constant expression > 0>

The macro yields the number of characters that the target environment requires for
representing temporary filenames created by tmpnam.

11.21.37NULL

#define NULL <either 0, 0L, or (void *)0> [0in C+t]

The macro yields a NULL pointer constant that is usable as an address constant expression.

11.21.38perror

void perror (const char *s);

The function writes a line of text to the stream stderr. If s is not a NULL pointer, the
function first writes the C string s (as if by calling fputs (s, stderr)), followed by a colon
(:) and a space. It then writes the same message C string that is returned by

strerror (errno), converting the value stored in errno, followed by an NL character.

11.21.39printf

int printf (const char *restrict format, ...);

The function generates formatted text, under the control of the format format and any
additional arguments, and writes each generated character to the stream stdout.

It returns the number of characters generated, or it returns a negative value if the function sets
the error indicator for the stream.

11.21.40putc

int putc(int ¢, FILE *stream);

The function has the same effect as fputc (c, stream) except that a macro version of putc
can evaluate stream more than once.

80-N2040-13 Rev. D 184

Qualcomm Hexagon C Library User Guide Header files

11.21.41putc_unlocked

int putc _unlocked(int ¢, FILE *stream); [POSIX]

The function provides functionality identical to that of putc, but does not perform implicit
locking of the streams it operates on. In multi-threaded programs, it can be used only within a
scope in which the stream has been successfully locked by the calling thread.

11.21.42putchar

int putchar (int c¢);

The function has the same effect as fputc (¢, stdout), writing a character to the stream
stdout.

11.21.43putchar_unlocked

int putchar unlocked(int c¢); [POSIX]

The function provides functionality identical to that of putchar, but does not perform implicit
locking of the streams it operates on. In multi-threaded programs, it can be used only within a
scope in which the stream has been successfully locked by the calling thread.

11.21.44puts

int puts(const char *s);

The function accesses characters from the C string s and writes them to the stream stdout.
The function writes an NL character to the stream in place of the terminating NULL character.
It returns a non-negative value if it has not set the error indicator; otherwise, it returns EOF.

11.21.45remove

int remove (const char *filename) ;

The function removes the file with the filename filename and returns zero if successful. If the

file is open when you remove it, the result is implementation defined. After you remove it, you
cannot open it as an existing file.

11.21.46rename

int rename (const char *old, const char *new) ;

The function renames the file with the filename o1d to have the filename new and returns zero
if successful. If a file with the filename new already exists, the result is implementation
defined. After you rename it, you cannot open the file with the filename o1d.

80-N2040-13 Rev. D 185

Qualcomm Hexagon C Library User Guide Header files

11.21.47rewind

void rewind (FILE *stream) ;

The function calls £seek (stream, 0L, SEEK_SET) and then clears the error indicator for
the stream stream.

11.21.48scanf

int scanf (const char *restrict format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned character from the stream stdin.

It returns the number of input items matched and assigned, or it returns EOF if the function
does not store values before it sets the end-of-file or error indicators for the stream.

11.21.49SEEK_CUR

#define SEEK CUR <integer constant expression>

The macro yields the value of the mode argument to £seek to indicate seeking relative to the
current file-position indicator.

11.21.50SEEK_END

#define SEEK END <integer constant expression>

The macro yields the value of the mode argument to £seek to indicate seeking relative to the
end of the file.

11.21.51SEEK_SET

#define SEEK SET <integer constant expression>

The macro yields the value of the mode argument to £seek to indicate seeking relative to the
beginning of the file.

11.21.52setbuf

void setbuf (FILE *restrict stream, char *restrict buf);

If buf is not a NULL pointer, the function calls setvbuf (stream, buf, _ IOFBF,
BUFSIZ), specifying full buffering with TOFBF and a buffer size of BUFSIZ characters.
Otherwise, the function calls setvbuf (stream, 0, _IONBF, BUFSIZ), specifying no
buffering with IONBF.

80-N2040-13 Rev. D 186

Qualcomm Hexagon C Library User Guide Header files

11.21.53setvbuf

int setvbuf (FILE *restrict stream, char *restrict buf, int mode,
size t size);

The function sets the buffering mode for the stream stream according to buf, mode, and
size. It returns zero if successful.

If buf is not a NULL pointer, buf is the address of the first element of an array of char of size
size that can be used as the stream buffer. Otherwise, setvbuf can allocate a stream buffer
that is freed when the file is closed. For mode, you must supply one of the following values:

m _10FBF — To indicate full buffering
m 10LBF — To indicate line buffering

m _10NBF — To indicate no buffering

You must call setvbuf after you call fopen to associate a file with that stream and before you
call a library function that performs any other operation on the stream.

11.21.54size_t

typedef ui-type size t;

The type is the unsigned integer type ui-type of an object that you declare to store the result
of the sizeof operator.

11.21.55snprintf

int snprintf (char *restrict s, size t n, const char *restrict format,

...); [Added with C99]

The function generates formatted text, under the control of the format format and any
additional arguments, and stores each generated character in successive locations of the array
object whose first element has the address s.

If n is zero, it stores no characters. Otherwise, the function stores up ton - 1 characters and
concludes by storing a NULL character in the next location of the array. It returns the number
of characters generated—not including the NULL character.

11.21.56sprintf

int sprintf (char *restrict s, const char *restrict format, ...);

The function generates formatted text, under the control of the format format and any
additional arguments, and stores each generated character in successive locations of the array
object whose first element has the address s.

The function concludes by storing a NULL character in the next location of the array. It returns
the number of characters generated—not including the NULL character.

80-N2040-13 Rev. D 187

Qualcomm Hexagon C Library User Guide Header files

11.21.57sscanf

int sscanf (const char *restrict s, const char *restrict format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It accesses each scanned character from successive locations of the array object
whose first element has the address s.

It returns the number of items matched and assigned, or it returns EOF if the function does not
store values before it accesses a NULL character from the array.

11.21.58stderr

#define stderr <pointer to FILE rvalue>

The macro yields a pointer to the object that controls the standard error output stream.

11.21.59stdin

#define stdin <pointer to FILE rvalue>

The macro yields a pointer to the object that controls the standard input stream.

11.21.60stdout

#define stdout <pointer to FILE rvalues>

The macro yields a pointer to the object that controls the standard output stream.

11.21.61tmpfile

FILE *tmpfile(void)

The function creates a temporary binary file with the filename temp-name and then has the
same effect as calling fopen (temp-name, "wb+"). The file temp-name is removed when the
program closes it, either by calling fclose explicitly or at normal program termination.

The filename temp-name does not conflict with any filenames that you create. If the open is
successful, the function returns a pointer to the object controlling the stream; otherwise, it
returns a NULL pointer.

11.21.62TMP_MAX

#define TMP_MAX <integer constant expression >= 25>

The macro yields the minimum number of distinct filenames created by the function tmpnam.

80-N2040-13 Rev. D 188

Qualcomm Hexagon C Library User Guide Header files

11.21.63tmpnam

char *tmpnam(char *s);

The function creates a unique filename temp-name and returns a pointer to the filename. If s
is not a NULL pointer, s must be the address of the first element of an array at least of size
L_tmpnam. The function stores temp-name in the array and returns s. Otherwise, if s is a
NULL pointer, the function stores temp-name in a static-duration array and returns the
address of its first element. Subsequent calls to tmpnam can alter the values stored in this array.

The function returns unique filenames for each of the first TMP_MaX times it is called, after
which its behavior is implementation defined. The filename temp-name does not conflict with
any filenames that you create.

11.21.64ungetc

int ungetc(int ¢, FILE *stream) ;

If ¢ is not equal to EOF, the function stores (unsigned char) c in the object whose address is
stream and clears the end-of-file indicator. If ¢ equals EOF or the store cannot occur, the
function returns EOF; otherwise, it returns (unsigned char)c. A subsequent library function
call that reads a character from the stream stream obtains this stored value, which is then
forgotten.

Thus, you can effectively push back a character to a stream after reading a character. (You
need not push back the same character that you read.) An implementation can let you push
back additional characters before you read the first one. You read the characters in reverse
order of pushing them back to the stream. You cannot portably:

m Push back more than one character
m Push back a character if the file-position indicator is at the beginning of the file

m Call ftell for a text file that has a character currently pushed back

A call to the functions fseek, fsetpos, or rewind for the stream causes the stream to forget
any pushed-back characters. For a binary stream, the file-position indicator is decremented for
each character that is pushed back.

80-N2040-13 Rev. D 189

Qualcomm Hexagon C Library User Guide Header files

11.21.65vfprintf

int viprintf (FILE *restrict stream, const char *restrict
format,va_ list ap);

The function generates formatted text, under the control of the format format and any
additional arguments, and writes each generated character to the stream stream.

The function returns the number of characters generated, or it returns a negative value if the
function sets the error indicator for the stream.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

11.21.66vfscanf

int vfscanf (FILE *restrict stream, const char *restrict format,

va_list ap); [Added with C99]

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned character from the stream stream.

The function returns the number of input items matched and assigned, or it returns EOF if the
function does not store values before it sets the end-of-file or error indicator for the stream.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

11.21.67vprintf

int vprintf (const char *restrict format, va list ap);

The function generates formatted text, under the control of the format format and any
additional arguments, and writes each generated character to the stream stdout.

The function returns the number of characters generated, or a negative value if the function
sets the error indicator for the stream.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

80-N2040-13 Rev. D 190

Qualcomm Hexagon C Library User Guide Header files

11.21.68vscanf

int vscanf (const char *restrict format, va list ap); [Added with C99]

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned character from the stream stdin.

The function returns the number of input items matched and assigned, or it returns EOF if the
function does not store values before it sets the end-of-file or error indicators for the stream.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

11.21.69vsnprintf

int vsnprintf (char *restrict s, size t n, const char *restrict format,

va_list ap); [Added with C99]

The function generates formatted text, under the control of the format format and any
additional arguments, and stores each generated character in successive locations of the array
object whose first element has the address s. If n is zero, it stores no characters. Otherwise, the
function stores up ton - 1 characters and concludes by storing a NULL character in the next
location of the array. It returns the number of characters generated—not including the NULL
character.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

11.21.70vsprintf

int vsprintf (char *restrict s, const char *restrict format, va_ list
ap) ;

The function generates formatted text, under the control of the format format and any
additional arguments, and stores each generated character in successive locations of the array
object whose first element has the address s. The function concludes by storing a NULL
character in the next location of the array. It returns the number of characters generated—not
including the NULL character.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

80-N2040-13 Rev. D 191

Qualcomm Hexagon C Library User Guide Header files

11.21.71vsscanf

int vsscanf (const char *restrict s, const char *restrict format,

va_list ap); [Added with C99]

The function scans formatted text, under the control of the format format and any additional
arguments. It accesses each scanned character from successive locations of the array object
whose first element has the address s. It returns the number of items matched and assigned, or
it returns EOF if the function does not store values before it accesses a NULL character from
the array.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

80-N2040-13 Rev. D 192

Qualcomm Hexagon C Library User Guide Header files

11.22 <stdlib.h>

Include the standard header <stdlib.hs> to declare an assortment of useful functions and to
define the macros and types that help you use them.

/* MACROS */

#define EXIT FAILURE <rvalue integer expressions>
#define EXIT_ SUCCESS <rvalue integer expression>
#define MB _CUR_MAX <rvalue integer expression >= 1>
#define NULL <either 0, OL, or (void *)0> [0in C++]
#define RAND MAX <integer constant expression >= 32,767>

/* TYPES */
typedef struct {
int quot, rem;
} div_t;
typedef struct {
long quot, rem;
} 1div_t;
typedef struct { [Added with C99]
long long quot, rem;
} 11div_t;

typedef ui-type size t;
typedef i-type wchar t; [keyword in C++]

/* FUNCTIONS */ int abs(int 1i);

long abs(long 1i); [C++ only]

long long abs(long long 1i); [C++ only, added with C99]
long long llabs(long long i); [Added with C99]

long labs(long 1) ;

div_t div(int numer, int denom) ;

1div_t div(long numer, long denom); [C++ only]

11div_t div(long long numer, long long denom); [C++ only, added with C99]
11div_t 11div(long long numer, long long denom); [Added with C99]
ldiv_t 1div(long numer, long denom) ;

int rand(void) ;
void srand(unsigned int seed);

long a641l (const char *s); [POSIX]

char *164a(long int 1); [POSIX]

double drand48 (void); [POSIX]

double erand48 (unsigned short xseed[3]); [POSIX]
long lrand4s8(void); [POSIX]

long nrand48 (unsigned short xseed[3]); [POSIX]

long mrand48 (void); [POSIX]

long jrand48 (unsigned short xseed[3]); [POSIX]

void srand48(long seed); [POSIX]

unsigned short *seed48 (unsigned short xseed[3]); [POSIX]
void lcong48 (unsigned short pl[7]); [POSIX]

int rand r(unsigned int *seed) ;
char *ecvt (double value, int ndigit, int *decpt, int *sign); [POSIX]
char *fcvt (double value, int ndigit, int *decpt, int *sign); [POSIX]

80-N2040-13 Rev. D 193

Qualcomm Hexagon C Library User Guide Header files

char *gcvt (double value, int ndigit, char *buf); [POSIX]

int getsubopt (char **optionp, char *const *tokens, char **valuep);
[POSIX]

int mkstemp (char *template); [POSIX]

char *tempnam(const char *tmpdir, const char *prefix); [POSIX]

double atof (const char *s);

int atoi(const char *s);

long atol (const char *s);

long long atoll (const char *s); [Added with C99]

double strtod(const char *restrict s, char **restrict endptr);

float strtof (const char *restrict s, char **restrict endptr); [Added
with C99]

long double strtold(const char *restrict s, char **restrict endptr);
[Added with C99]

long long strtoll (const char *restrict s, char **restrict endptr, int
base) ; [Added with C99]

unsigned long long strtoull (const char *restrict s, char **restrict
endptr, int base); [Added with C99]

long strtol (const char *restrict s, char **restrict endptr, int base);
unsigned long strtoul (const char *restrict s, char **restrict endptr,
int base) ;

void *calloc(size t nelem, size t size);
void free(void *ptr);

void *malloc(size t size);

void *realloc(void *ptr, size t size);

int mblen(const char *s, size t n);

size t mbstowcs(wchar t *restrict wcs, const char *restrict s, size t
n;

int mbtowc (wchar t *restrict pwc, const char *restrict s, size t n);
size t wcstombs(char *restrict s, const wchar t *restrict wcs, size t
n;

int wctomb (char *s, wchar t wchar);

void Exit (int status); [Added with C99]
void exit (int status) ;

void abort (void) ;

char *getenv(const char *name) ;

int putenv(const char *string); [POSIX]
int system(const char *s);

extern "C++"

int atexit(void (*func) (void)); [C++ only]
extern "C" [C++ only]

int atexit (void (*func) (void)) ;
extern "C++"

void *bsearch (const void *key, const void *base,

size t nelem, size t size,
int (*cmp) (const void *ck,
const void *ce)); [C+tonly]

80-N2040-13 Rev. D 194

Qualcomm Hexagon C Library User Guide

Header files

11.22.1

extern "C" [C++ only]
void *bsearch (const void *key,
size t nelem, size t size,
int (*cmp) (const void *ck,
const void *ce));

const void *base,

extern "C++"
void gsort (void *base,
int (*cmp) (const void *el,
extern "C" [C++ only]
void gsort (void *base,
int (*cmp) (const void *el,

size t nelem, size t size,
const void *e2)); [C++ only]

size t nelem, size t size,
const void *e2));

char *mktemp (char *template); [POSIX]

a64l

long a64l (const char *s); [POSIX]

The a641 and 164a functions convert between a long integer and its base-64 ASCII string
representation.

Table 11-5lists the characters used to represent digits.

Table 11-5 a64l character to digit representations

Character Digit
0
/ 1
0-9 2-11
A-Z 12-37
a-z 38-63

11.22.2

a641 takes a pointer to a NULL-terminated base-64 ASCII string representation, s, and
returns the corresponding long integer value. On successful completion, a641 returns the long
integer value corresponding to the input string. If the string pointed to by s is an empty string,
a641 returns a value of oL.

abort

void abort (void) ;

The function calls raise (SIGABRT), which reports the abort signal, SIGABRT. Default
handling for the abort signal is to cause abnormal program termination and report unsuccessful
termination to the target environment. Whether the target environment flushes output streams,
closes open files, or removes temporary files on abnormal termination is implementation
defined.

If you specify handling that causes raise to return control to abort, the function calls
exit (EXIT FAILURE), to report unsuccessful termination with EXIT FAILURE. The abovt
function never returns control to its caller.

80-N2040-13 Rev. D 195

Qualcomm Hexagon C Library User Guide Header files

11.22.3 abs

int abs(int i) ;
long abs(long 1i); [C++ only]
long long abs(long long 1i); [C++ only, added with C99]

The function returns the absolute value of i, |i|. The version that accepts a long argument
behaves the same as labs

11.22.4 atexit

extern "C++"

int atexit (void (*func) (void)); [C++ only]
extern "C" [C++ only]

int atexit (void (*func) (void)) ;

The function registers the function whose address is func to be called by exit (or when main
returns) and returns zero if successful. The functions are called in reverse order of registry.
You can register at least 32 functions.

Furthermore, in C++, if control leaves a called function because it fails to handle a thrown
exception, terminate is called.

11.22.5 atof

double atof (const char *s);

The function converts the initial characters of string s to an equivalent value x of type double
and then returns x. The conversion is the same as for strtod (s, 0), except that a value is not
necessarily stored in errno if a conversion error occurs.

11.22.6 atoi

int atoi(const char *s);

The function converts the initial characters of string s to an equivalent value x of type int and
then returns x. The conversion is the same as for (int)strtol(s, 0, 10), exceptthata
value is not necessarily stored in errno if a conversion error occurs.

11.22.7 atol

long atol (const char *s);

The function converts the initial characters of string s to an equivalent value x of type long
and then returns x. The conversion is the same as for strtol (s, 0, 10), except thata value
is not necessarily stored in errno if a conversion error occurs.

80-N2040-13 Rev. D 196

Qualcomm Hexagon C Library User Guide Header files

11.22.8

atoll
long long atoll (const char *s); [Added with C99]

The function converts the initial characters of string s to an equivalent value x of type long
long and then returns x. The conversion is the same as for strtoll (s, 0, 10), except that
a value is not necessarily stored in errno if a conversion error occurs.

11.22.9 bsearch
extern "extern "C++"
void *bsearch (const void *key, const void *base,
size t nelem, size t size,
int (*cmp) (const void *ck,
const void *ce)); [C++ only]
extern "C" [C++ only]
void *bsearch (const void *key, const void *base,
size t nelem, size t size,
int (*cmp) (const void *ck,
const void *ce)) ;ce));
The function searches an array of ordered values and returns the address of an array element
that equals the search key key (if one exists); otherwise, it returns a NULL pointer. The array
consists of nelem elements, each of size bytes, beginning with the element whose address is
base.
bsearch calls the comparison function whose address iscmp to compare the search key with
elements of the array. The comparison function must return:
m A negative value if the search key ck is less than the array element ce
m Zero if the two are equal
m A positive value if the search key is greater than the array element
This function assumes that the array elements are in non-descending order according to the
same comparison rules that are used by the comparison function.
11.22.10calloc

void *calloc(size t nelem, size t size);

The function allocates an array object containing nelem elements each of size size, stores
zeros in all bytes of the array, and returns the address of the first element of the array if
successful. Otherwise, it returns a NULL pointer.

You can safely convert the return value to an object pointer of any type whose size in bytes is
not greater than size.

80-N2040-13 Rev. D 197

Qualcomm Hexagon C Library User Guide Header files

11.22.11div

div_t div(int numer, int denom) ;
1div_t div(long numer, long denom); [C++ only]
11div_t div(long long numer, long long denom); [C++ only, added with C99]

The function divides numer by denom and returns both quotient and remainder in the structure
result x, if the quotient can be represented. The structure member x . quot is the algebraic
quotient truncated toward zero. The structure memberx . rem is the remainder, such that numer
== X.quot*denom + X.rem.

11.22.12div_t

typedef struct ({
int quot, rem;
} div t;

The type is the structure type returned by the function div. The structure contains members
that represent the quotient (quot) and remainder (rem) of a signed integer division with
operands of type int. The members shown above can occur in either order.

11.22.13drand48
double drand48(void); [POSIX]

The rand48 family of functions generates pseudo-random numbers using a linear congruential
algorithm working on 48-bit integers. The formula employed is r (n+1) = (a * r(n) + c)
mod m, where the default values are for the multiplicand, a = 0x5deeceé66d =
25214903917, and the addend, ¢ = 0xb = 11. The modulus is always fixed at m = 248.

r (n) is called the seed of the random number generator.

The first computational step is to perform a single iteration of the algorithm.

drand4s returns values of type double. The full 48 bits of r (n+1) are loaded into the
mantissa of the returned value, with the exponent set such that the values produced lie in the
interval [0.0, 1.0).

drand48 uses an internal buffer to store r (n) . For these functions the initial value of r (0) =
0x1234abcd330e = 20017429951246.

11.22.14ecvt

char *ecvt (double value, int ndigit, int *decpt, int *sign); [POSIX]

This function has been marked as legacy in the POSIX standard, and exists only for backwards
compatibility. Use strtod instead.

80-N2040-13 Rev. D 198

Qualcomm Hexagon C Library User Guide Header files

11.22.15erand48

double erand48 (unsigned short xseed[3]); [POSIX]

The rand48 family of functions generates pseudo-random numbers using a linear congruential
algorithm working on 48-bit integers. The formula employed is r (n+1) = (a * r(n) + c)
mod m, where the default values are for the multiplicand, a = 0x5deeceé66d =
25214903917, and the addend, ¢ = 0xb = 11. The modulus is always fixed atm = 248.

r (n) is called the seed of the random number generator.

The first computational step is to perform a single iteration of the algorithm.

erand48 returns values of type double. The full 48 bits of r (n+1) are loaded into the
mantissa of the returned value, with the exponent set such that the values produced lie in the
interval [0.0, 1.0).

erand48 uses a user-supplied buffer to store the seed r (n) , which consists of an array of three
shorts, where the zeroth member holds the least significant bits.

11.22.16exit

void exit (int status);

The function calls all functions registered by atexit, closes all files, and returns control to the
target environment. If status is zero or EXIT SUCCESS, the program reports successful
termination. If status is EXIT FAILURE, the program reports unsuccessful termination. An
implementation can define additional values for status.

11.22.17_Exit

void Exit (int status); [Added with C99]

The function returns control to the target environment. The value of status has the same effect
as for a call to exit. The function does not call functions registered by atexit. It may or may
not close files.

11.22.18EXIT_FAILURE

#define EXIT FAILURE <rvalue integer expressions>

The macro yields the value of the status argument to exit that reports unsuccessful termination.

11.22.19EXIT_SUCCESS

#define EXIT_ SUCCESS <rvalue integer expressions>

The macro yields the value of the status argument to exit that reports successful termination.

80-N2040-13 Rev. D 199

Qualcomm Hexagon C Library User Guide Header files

11.22.20fcvt

char *fcvt (double value, int ndigit, int *decpt, int *sign); [POSIX]

This function has been marked as legacy in the POSIX standard, and exists only for backwards
compatibility. Use strtod, instead.

11.22.21free

void free(void *ptr) ;

If ptr is not a NULL pointer, the function deallocates the object whose address is ptr;
otherwise, it does nothing. You can deallocate only objects that you first allocate by calling
calloc,malloc, Or realloc

11.22.22gcvt

char *gcvt (double value, int ndigit, char *buf); [POSIX]

This function has been marked as legacy in the POSIX standard, and exists only for backwards
compatibility. Use strtod, instead.

11.22.23getenv

char *getenv(const char *name) ;

The function searches an environment list, which each implementation defines, for an entry
whose name matches the string name. If the function finds a match, it returns a pointer to a
static-duration object that holds the definition associated with the target environment
name. Otherwise, it returns a NULL pointer.

Do not alter the value stored in the object. If you call getenv again, the value stored in the
object can change. No target environment names are required of all environments.

11.22.24getsubopt

extern char *suboptarg
int getsubopt (char **optionp, char *const *tokens, char **valuep);

[POSIX]

The function parses a string containing tokens delimited by one or more tab, space, or comma
(,) characters. It is intended for use in parsing groups of option arguments provided as part of a
utility command line.

The argument opt ionp is a pointer to a pointer to the string. The argument tokens is a pointer
to a NULL-terminated array of pointers to strings.

The getsubopt function returns the zero-based offset of the pointer in the tokens array
referencing a string which matches the first token in the string, or -1 if the string contains no
tokens or tokens does not contain a matching string.

80-N2040-13 Rev. D 200

Qualcomm Hexagon C Library User Guide Header files

If the token is of the form “name=value”, the location referenced by valuep will be set to
point to the start of the value portion of the token.

On return from getsubopt, optionp is set to point to the start of the next token in the string,
or the NULL character at the end of the string if no more tokens are present. The external
suboptarg variable will be set to point to the start of the current token or NULL if no tokens
were present. The valuep argument will be set to point to the value portion of the token or
NULL if no value portion was present.

For example:

char *tokens[] = {
#define ONE 0
"one",
#define TWO 1
"two",
NULL
Vi

extern char *optarg, *suboptarg;
char *options, *value;

while ((ch = getopt(argc, argv, "ab:")) != -1) {
switch(ch) {
case 'a':
/* process ~Ta'' option */
break;
case 'b':

options = optarg;
while (*optioms) {
switch (getsubopt (&options, tokens, &value)) {

case ONE:
/* process ~“one'' sub option */
break;

case TWO:
/* process ~"two'' sub option */

if (!value)
error ("no value for two");
i = atoi(value) ;
break;
case -1:
if (suboptarg)
error ("unknown sub option %s",
suboptarg) ;
else
error ("missing sub option") ;
break;

break;

80-N2040-13 Rev. D 201

Qualcomm Hexagon C Library User Guide Header files

11.22.25jrand48

long jrand48 (void); [POSIX]

The rand48 family of functions generates pseudo-random numbers using a linear congruential
algorithm working on 48-bit integers. The formula employed is r (n+1) = (a * r(n) + c)
mod m where the default values are for the multiplicand, a = 0x5deece66d = 25214903917,
and the addend, ¢ = 0oxb = 11. The modulus is always fixed atm = 248. r(n) is called the
seed of the random number generator.

The first computational step is to perform a single iteration of the algorithm.

11.22.26164a

char *164a(long int 1); [POSIX]

The function takes a long integer value, 1, and returns a pointer to the corresponding NULL-
terminated base-64 ASCII string representation.

Table 11-6 lists the characters used to represent digits.

Table 11-6 164a character to digit representations

Character Digit
0
/ 1
0-9 2-11
A-Z 12-37
a-z 38-63

If 1 is 0L, 164a returns a pointer to an empty string.

The 164a function is not reentrant.

11.22.271abs

long labs(long 1) ;

The function returns the absolute value of i, |i|, the same as abs.

11.22.28lcong48

void lcong48 (unsigned short pl[7]); [POSIX]

The rand48 family of functions generates pseudo-random numbers using a linear congruential
algorithm working on 48-bit integers. The formula employed is r (n+1) = (a * r(n) + c)
mod m where the default values are for the multiplicand, a = 0x5deece66d = 25214903917,
and the addend, ¢ = 0xb = 11. The modulus is always fixed atm = 248. r(n) is called the
seed of the random number generator.

80-N2040-13 Rev. D 202

Qualcomm Hexagon C Library User Guide Header files

The first computational step is to perform a single iteration of the algorithm.

Finally, 1cong4s allows full control over the multiplicand and addend used in dranda4s,
erand48, 1rand48, nrand48, mrand48, and jrand4s, and the seed used in drand4s,
lrand4s, and mrand4s.

An array of seven shorts is passed as parameter; the first three shorts are used to initialize the
seed; the second three are used to initialize the multiplicand; and the last short is used to
initialize the addend. It is thus not possible to use values greater than oxff£f as the addend.

All three methods of seeding the random number generator always also set the multiplicand
and addend for any of the six generator calls.

11.22.291labs

long long llabs(long long i); [Added with C99]

The function returns the absolute value of i, |i|, the same as abs.

11.22.301div

ldiv_t 1div(long numer, long denom) ;

The function divides numer by denom and returns both quotient and remainder in the structure
result x, if the quotient can be represented. The structure member x . quot is the algebraic
quotient truncated toward zero. The structure memberx . rem is the remainder, such that numer
== X.quot*denom + X.rem.

11.22.31lidiv

11div_t 11div(long long numer, long long denom); [Added with C99]

The function divides numer by denom and returns both quotient and remainder in the structure
result x, if the quotient can be represented. The structure member x . quot is the algebraic
quotient truncated toward zero. The structure memberx . rem is the remainder, such that numer
== X.quot*denom + x.rem.

80-N2040-13 Rev. D 203

Qualcomm Hexagon C Library User Guide Header files

11.22.32Idiv_t

typedef struct {
long quot, rem;
} 1ldiv_t;

The type is the structure type returned by the function 1div. The structure contains members
that represent the quotient (quot) and remainder (rem) of a signed integer division with
operands of type 1ong. The members shown above can occur in either order.

11.22.33lIdiv_t

typedef struct { [Added with C99]
long long quot, rem;
} 1ldiv_t;

The type is the structure type returned by the function 1ldiv. The structure contains members
that represent the quotient (quot) and remainder (rem) of a signed integer division with
operands of type long long. The members shown above can occur in either order.

11.22.34Irand48
long lrand48 (void); [POSIX]

The rand48 family of functions generates pseudo-random numbers using a linear congruential
algorithm working on 48-bit integers. The formula employed is r (n+1) = (a * r(n) + c)
mod m where the default values are for the multiplicand, a = 0x5deece66d = 25214903917,
and the addend, ¢ = 0xb = 11. The modulus is always fixed atm = 248. r(n) is called the
seed of the random number generator.

The first computational step is to perform a single iteration of the algorithm.

1rand48 returns values of type long in the range [0, 2**31-1]. The high-order (31) bits of
r(n+1) are loaded into the lower bits of the returned value, with the topmost (sign) bit set to
Zero.

lrand48 uses an internal buffer to store r (n) . The initial value of r (0) = 0x1234abcd330e
= 20017429951246.

11.22.35malloc

void *malloc(size t size);

The function allocates an object of size size, and returns the address of the object if
successful; otherwise, it returns a NULL pointer. The values stored in the object are
indeterminate. You can safely convert the return value to an object pointer of any type whose
size is not greater than size.

80-N2040-13 Rev. D 204

Qualcomm Hexagon C Library User Guide Header files

11.22.36 MB_CUR_MAX

#define MB CUR _MAX <rvalue integer expression >= 1>

The macro yields the maximum number of characters that constitute a multibyte character in
the current locale. Its value is <= MB_LEN MAX.

11.22.37mblen

int mblen(const char *s, size t n);

If s is not a NULL pointer, the function returns the number of bytes in the multibyte string s
that constitute the next multibyte character, or it returns -1 if the next n (or the remaining)
bytes do not constitute a valid multibyte character. mblen does not include the terminating
NULL in the count of bytes. The function can use a conversion state stored in an internal
static-duration object to determine how to interpret the multibyte string.

If s is a NULL pointer and if multibyte characters have a state-dependent encoding in the
current locale, the function stores the initial conversion state in its internal static-duration
object and returns nonzero; otherwise, it returns zero.

11.22.38mbstowcs

size_t mbstowcs (wchar t *restrict wcs, const char *restrict s, size_t
n) ;

The function stores a wide character string, in successive elements of the array whose first
element has the address wcs, by converting, in turn, each of the multibyte characters in the
multibyte string s. The string begins in the initial conversion state. The function converts each
character as if by calling mbtowc (except that the internal conversion state stored for that
function is unaffected). It stores at most n wide characters, stopping after it stores a NULL
wide character. It returns the number of wide characters it stores, not counting the NULL wide
character, if all conversions are successful; otherwise, it returns -1.

11.22.39mbtowc

int mbtowc (wchar t *restrict pwc, const char *restrict s, size t n);

If s is not a NULL pointer, the function determines x, the number of bytes in the multibyte
string s that constitute the next multibyte character. (x cannot be greater than

MB CUR MAX.) If pwc is not a NULL pointer, the function converts the next multibyte
character to its corresponding wide-character value and stores that value in *pwc. It then
returns x, or it returns -1 if the next n or the remaining bytes do not constitute a valid
multibyte character.mbtowc does not include the terminating NULL in the count of bytes. The
function can use a conversion state stored in an internal static-duration object to
determine how to interpret the multibyte string.

If s is a NULL pointer and if multibyte characters have a state-dependent encoding in the
current locale, the function stores the initial conversion state in its internal static-duration
object and returns nonzero; otherwise, it returns zero.

80-N2040-13 Rev. D 205

Qualcomm Hexagon C Library User Guide Header files

11.22.40mkstemp

int mkstemp (char *template); [POSIX]

The mkstemp function makes the same replacement to the template as mktemp and creates the
template file, mode 0600, returning a file descriptor opened for reading and writing. This
avoids the race between testing for a file’s existence and opening it for use.

11.22.41mktemp

char * mktemp (char *template); [POSIX]

The function takes the given file name template and overwrites a portion of it to create a file
name. This file name is unique and suitable for use by the application. The template can be any
file name with some number of “x”s appended to it, for example, /tmp/temp . XxXxXXX. The
trailing Xs are replaced with the current process number or a unique letter combination. The
number of unique file names mktemp can return depends on the number of xs provided.
Although the NetBSD implementation of the functions will accept any number of trailing xs,
for portability reasons one should only use six. Using six xs will result in mktemp testing
roughly 266 (308,915,776) combinations.

NOTE: The permissions of the file or directory being created are subject to the restrictions
imposed by the umask system call, so the created file might be unreadable or
unwritable.

mktemp returns a pointer to the template on success and NULL on failure. If the call fails an
error code is placed in the global variable errno.

Often code uses mktemp very early on, perhaps to globally initialize the template nicely, but
the code that calls open or fopen on that filename occurs much later. In almost all cases, the
use of fopen means that the flags 0 CREAT or 0 EXCL are not given to open, and thus a
symbolic link race becomes possible, making it necessary to use £dopen. Furthermore, be
careful about code that opens, closes, and then re-opens the file in question. Finally, ensure
that upon error, the temporary file is removed correctly.

There are also cases where it is better to modify the code to use mktemp, in concert with open
using the flags O CREAT or O EXCL, as long as the code retries a new template if open fails
with an errno of EEXIST.

mktemp can set errno to ENOTDIR if the pathname portion of the template is not an existing
directory, and it can also set errno to any value specified by the stat function.

80-N2040-13 Rev. D 206

Qualcomm Hexagon C Library User Guide Header files

11.22.42mrand48

long mrand48 (void) ; [POSIX]

The rand48 family of functions generates pseudo-random numbers using a linear congruential
algorithm working on 48-bit integers. The formula employed is r (n+1) = (a * r(n) + c)
mod m where the default values are for the multiplicand, a = 0x5deece66d = 25214903917,
and the addend, ¢ = 0oxb = 11. The modulus is always fixed atm = 248. r(n) is called the
seed of the random number generator.

The first computational step is to perform a single iteration of the algorithm.

mrand48 returns values of type long in the range [-2+*31, 2+*31-1]. The high-order (32)
bits of r (n+1) are loaded into the returned value.

mrand4 8 uses an internal buffer to store r (n) . The initial value of r (0) = 0x1234abcd330e
= 20017429951246.
11.22.43nrand48
long nrand48 (unsigned short xseed[3]); [POSIX]

The rand48 family of functions generates pseudo-random numbers using a linear congruential
algorithm working on 48-bit integers. The formula employed is r (n+1) = (a * r(n) + c)
mod m where the default values are for the multiplicand, a = 0x5deece66d = 25214903917,
and the addend, ¢ = 0oxb = 11. The modulus is always fixed atm = 248. r(n) is called the
seed of the random number generator.

The first computational step is to perform a single iteration of the algorithm.

nrand48 returns values of type long in the range [0, 2**31-1]. The high-order (31) bits of
r(n+1) are loaded into the lower bits of the returned value, with the topmost (sign) bit set to
Zero.

nrand48 uses a user-supplied buffer to store the seed r (n) , which consists of an array of three
shorts, where the zeroth member holds the least significant bits.

11.22.44NULL

#define NULL <either 0, OL, or (void #*)0> [0in C++]

The macro yields a NULL pointer constant that is usable as an address constant expression.

80-N2040-13 Rev. D 207

Qualcomm Hexagon C Library User Guide Header files

11.22.45putenv

int putenv(const char *string); [POSIX]

The function sets an environment variable from the host environment list. For compatibility
with differing environment conventions, the given argument’s name and value can be
appended and prepended, respectively, with an equal sign, =.

This function takes an argument of the form name=value and is equivalent to:

setenv (name, value, 1);

The function returns zero if successful; otherwise the global variable errno is set to indicate
the error and a -1 is returned.

11.22.46qgsort

extern "C++"
void gsort(void *base, size t nelem, size t size,
int (*cmp) (const void *el, const void *e2));
[C++ only]
extern "C" [C++ only]
void gsort (void *base, size t nelem, size t size,
int (*cmp) (const void *el, const void *e2));

The function sorts, in place, an array consisting of nelem elements, each of size bytes,
beginning with the element whose address is base. It calls the comparison function whose
address iscmp to compare pairs of elements. The comparison function must return a negative
value if:

m elislessthane2
m Zero if the two are equal

m A positive value if el is greater than e2

Two array elements that are equal can appear in the sorted array in either order.

11.22.47rand

int rand(void) ;

The function computes a pseudo-random number x based on a seed value stored in an internal
static-duration object, alters the stored seed value, and returns x. x is in the interval [0,
RAND MAX].

11.22.48RAND_MAX

#define RAND MAX <integer constant expression >= 32,767>

The macro yields the maximum value returned by rand.

80-N2040-13 Rev. D 208

Qualcomm Hexagon C Library User Guide Header files

11.22.49rand_r

int rand r (unsigned int *seed);

The rand_r function has the same functionality as rand except that a pointer to a seed must be
supplied and maintained by the caller.

11.22.50realloc

void *realloc(void *ptr, size t size);

The function allocates an object of size size, possibly obtaining initial stored values from the
object whose address is ptr. It returns the address of the new object if successful; otherwise, it
returns a NULL pointer. You can safely convert the return value to an object pointer of any
type whose size is not greater than size.

If ptr is not a NULL pointer, it must be the address of an existing object that you first allocate
by calling calloc, malloc, or realloc. If the existing object is not larger than the newly
allocated object, realloc copies the entire existing object to the initial part of the allocated
object. (The values stored in the remainder of the object are indeterminate.) Otherwise, the
function copies only the initial part of the existing object that fits in the allocated object.

If realloc succeeds in allocating a new object, it deallocates the existing object. Otherwise,
the existing object is left unchanged.

If ptr is a NULL pointer, the function does not store initial values in the newly created object.

11.22.51seed48

unsigned short *seed48 (unsigned short xseed[3]); [POSIX]

The rand48 family of functions generates pseudo-random numbers using a linear congruential
algorithm working on 48-bit integers. The formula employed is r (n+1) = (a * r(n) + c)
mod m, where the default values are for the multiplicand, a = 0x5deeceé66d =
25214903917, and the addend, ¢ = 0xb = 11. The modulus is always fixed atm = 248.

r (n) is called the seed of the random number generator.

The first computational step is to perform a single iteration of the algorithm.

seed4s also initializes the internal buffer r (n) of drand48, 1rand4s, and mrand48, but here
all 48 bits of the seed can be specified in an array of three shorts, where the zeroth member
specifies the lowest bits. Again, the constant multiplicand and addend of the algorithm are
reset to the default values given above.

seed48 returns a pointer to an array of three shorts which contains the old seed. This array is
statically allocated, thus its contents are lost after each new call to seed4s.

All three methods of seeding the random number generator always also set the multiplicand
and addend for any of the six generator calls.

80-N2040-13 Rev. D 209

Qualcomm Hexagon C Library User Guide Header files

11.22.52size_t

typedef ui-type size t;

The type is the unsigned integer type ui-type of an object that you declare to store the result
of the sizeof operator.

11.22.53srand

void srand(unsigned int seed);

The function stores the seed value seed in a static-duration object that rand uses to
compute a pseudo-random number. From a given seed value, that function always generates
the same sequence of return values. The program behaves as if the target environment calls
srand(1) at program startup.

11.22.54srand48

void srand48(long seed); [POSIX]

The rand48 family of functions generates pseudo-random numbers using a linear congruential
algorithm working on 48-bit integers. The formula employed is r (n+1) = (a * r(n) + c)
mod m where the default values are for the multiplicand, a = 0x5deece66d = 25214903917,
and the addend, ¢ = 0xb = 11. The modulus is always fixed atm = 248. r(n) is called the
seed of the random number generator.

The first computational step is to perform a single iteration of the algorithm.

srand4s is used to initialize the internal buffer r (n) of drand48, 1rand4s, and mrand48
such that the 32 bits of the seed value are copied into the upper 32 bits of r (n), with the lower
16 bits of r (n) arbitrarily being set to 0x330e. Additionally, the constant multiplicand and
addend of the algorithm are reset to the default values given above.

All three methods of seeding the random number generator always also set the multiplicand
and addend for any of the six generator calls.

80-N2040-13 Rev. D 210

Qualcomm Hexagon C Library User Guide Header files

11.22.55strtod

strtod
decimal
pattern

. + strtod d
- full
]] pattern

w

strtod at
hexadecimal
pattern

Figure 11-2 strtod pattern matching

Boldface indicates a feature added with C99.

Here, inf is the sequence of characters inf or infinity with individual letters in either case, to
represent the special value infinity. Similarly, nan is the sequence of characters nan or
nan(qualifier) with individual letters in either case, to represent the special value not-a-
number (NaN). A qualifier is any sequence of zero or more letters, digits, and underscores.
Each implementation defines what effect, if any, a qualifier has on the actual encoding of a
NaN.

Figure 11-3 shows the pattern for a strtod hexadecimal string.

strtod
hexadecimal
pattern

Figure 11-3 strtod hexadecimal string

Here, hex is a hexadecimal digit in either case, and a point is the decimal-point character for
the current locale. (It is the dot (.) in the “C” locale.) If the strings matches this pattern, its
equivalent value is the hexadecimal integer represented by any digits to the left of the point,
plus the hexadecimal fraction represented by any digits to the right of the point, times two
raised to the signed decimal integer power that follows an optional p or P. A leading minus
sign negates the value.

80-N2040-13 Rev. D 211

Qualcomm Hexagon C Library User Guide Header files

Figure 11-4 shows the pattern for a strtod decimal string.

Eerp phed
strtod
hexadecimal
tte
)[poin?’: }g hex | i >
)

hex |

)4
0x

Figure 11-4 strtod decimal string

Here, a point is the decimal-point character for the current locale. (It is the dot (.) in the “C”
locale.) If the strings matches this pattern, its equivalent value is the decimal integer
represented by any digits to the left of the point, plus the decimal fraction represented by any
digits to the right of the point, times 10 raised to the signed decimal integer power that follows
an optional e or E. A leading minus sign negates the value.

In locales other than the “C” locale, strtod can define additional patterns as well.

If string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If a
range error occurs, strtod behaves exactly as the functions declared in <math.h>.

11.22.56strtof

float strtof (const char *restrict s, char **restrict endptr); [Added
with C99]

The function converts the initial characters of string s to an equivalent value x of type float.
If endptr is not a NULL pointer, the function stores a pointer to the unconverted remainder of
the string in *endptr. The function then returns x. strtof converts strings exactly as does
strtod.

If string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If a
range error occurs, strtod behaves exactly as the functions declared in <math.h>.

80-N2040-13 Rev. D 212

Qualcomm Hexagon C Library User Guide Header files

11.22.57 strtol

long strtol (const char *restrict s, char **restrict endptr, int base);

The function converts the initial characters of string s to an equivalent value x of type long. If
endptr is not a NULL pointer, it stores a pointer to the unconverted remainder of the string in
*endptr. The function then returns x.

The initial characters of string s must consist of zero or more characters for which isspace
returns nonzero, followed by the longest sequence of one or more characters that match the
pattern for strtol shown in Figure 11-5.

t 8)’; strtol
n-9 pattern
a—; »

Figure 11-5 strtol pattern

The function accepts the sequences 0x or 0x only when base equals zero or 16. The letters a-z
or A-Z represent digits in the range [10, 36). If base is in the range [2, 36], the function
accepts only digits with values less than base. If base == 0, a leading 0x oro0x (after any
sign) indicates a hexadecimal (base 16) integer, a leading 0 indicates an octal (base 8) integer,
and any other valid pattern indicates a decimal (base 10) integer.

If string s matches this pattern, its equivalent value is the signed integer of the appropriate
base represented by the digits that match the pattern. (A leading minus sign negates the value.)
In locales other than the “C” locale, strtol can define additional patterns as well.

If string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If the
equivalent value is too large to represent as type long, strtol stores the value of ERANGE in
errno and returns either LONG MAX if x is positive, or LONG MIN if x is negative.

11.22.58strtold

long double strtold(const char *restrict s, char **restrict endptr);

[Added with C99]

The function converts the initial characters of string s to an equivalent value x of type long
double. If endptr is not a NULL pointer, the function stores a pointer to the unconverted
remainder of the string in *endptr. The function then returns x. strtold converts strings
exactly as does strtod.

If string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If a
range error occurs, strtod behaves exactly as the functions declared in <math.h>.

80-N2040-13 Rev. D 213

Qualcomm Hexagon C Library User Guide Header files

11.22.59strtoll

long long strtoll (const char *restrict s, char **restrict endptr, int

base) ; [Added with C99]

The function converts the initial characters of string s to an equivalent value x of type long
long. If endptr is not a NULL pointer, it stores a pointer to the unconverted remainder of the
string in *endptr. The function then returns x. strtoll converts strings exactly as does
strtol.

If string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If the
equivalent value is too large to represent as type long long, strtoll stores the value of ERANGE in
errno and returns either LLONG MAX if x is positive, or LLONG MIN if x is negative.

11.22.60strtoul

unsigned long strtoul (const char *restrict s, char **restrict endptr,
int base) ;

The function converts the initial characters of string s to an equivalent value x of type
unsigned long. If endptr is not a NULL pointer, it stores a pointer to the unconverted
remainder of the string in *endptr. The function then returns x.

strtoul converts strings exactly as does strtol, but reports a range error only if the equivalent
value is too large to represent as type unsigned long. In this case, strtoul stores the value of
ERANGE in errno and returns ULONG MAX.

11.22.61strtoull

unsigned long long strtoull (const char *restrict s, char **restrict
endptr, int base); [Added with C99]

The function converts the initial characters of string s to an equivalent value x of type
unsigned long long. If endptr is not a NULL pointer, it stores a pointer to the unconverted
remainder of the string in *endptr. The function then returns x. strtoull converts strings
exactly as does strtoul.

If string s does not match a valid pattern, the value stored in *endptr is s, and x is zero. If the
equivalent value is too large to represent as type unsigned long long, strtoull stores the
value of ERANGE in errno and returns ULLONG MAX.

11.22.62system

int system(const char *g);

If s is not a NULL pointer, the function passes the strings to be executed by a command
processor, supplied by the target environment, and returns the status reported by the command
processor. If s is a NULL pointer, the function returns nonzero only if the target environment
supplies a command processor. Each implementation defines what strings its command
processor accepts.

80-N2040-13 Rev. D 214

Qualcomm Hexagon C Library User Guide Header files

11.22.63tempnam

char *tempnam(const char *tmpdir, const char *prefix); [POSIX]

The function is similar to tmpnam but provides the ability to specify the directory that will
contain the temporary file, tmpdir, and the file name prefix. tempnam functions return a
pointer to a file name on success and a NULL pointer on error.

11.22.64wchar_t

typedef i-type wchar t; [keyword in C++]

The type is the integer type i-type of a wide-character constant, such as L'X'. Declare an
object of type wchar tto hold a wide character.

11.22.65wcstombs

size t wcstombs (char *restrict s, const wchar t *restrict wcs, size t
n;

The function stores a multibyte string in successive elements of the array whose first element
has the address s, by converting in turn each of the wide characters in the string wcs.

The multibyte string begins in the initial conversion state. The function converts each wide
character as if by calling wctomb (except that the conversion state stored for that function is
unaffected). It stores no more than n bytes, stopping after it stores a NULL byte. It returns the
number of bytes it stores, not counting the NULL byte, if all conversions are successful;
otherwise, it returns -1.

11.22.66wctomb

int wctomb(char *s, wchar t wchar);

If s is not a NULL pointer, the function determines x, the number of bytes needed to represent
the multibyte character corresponding to the wide character wchar. x cannot exceed
MB_CUR_MAX.

The function converts wchar to its corresponding multibyte character, which it stores in
successive elements of the array whose first element has the address s. It then returns x, or it
returns -1 if wchar does not correspond to a valid multibyte character.

This function includes the terminating NULL byte in the count of bytes. The function can use
a conversion state stored in a static-duration object to determine how to interpret the
multibyte character string.

If s is a NULL pointer and if multibyte characters have a state-dependent encoding in the
current locale, the function stores the initial conversion state in its static-duration object
and returns nonzero; otherwise, it returns zero.

80-N2040-13 Rev. D 215

Qualcomm Hexagon C Library User Guide

Header files

11.23 <string.h>

Include the standard header <string.h> to declare a number of functions that help you
manipulate C strings and other arrays of characters.

/* MACROS */
#define NULL <either 0, 0L, or (void *)0> [0in C++]

/* TYPES */
typedef ui-type size t;

/* FUNCTIONS */

void *memccpy (void *dst, const void *src, int ¢, size t len); [POSIX]
int memcmp (const void *sl, const void *s2, size t n);

void *memcpy (void *restrict sl, const void *restrict s2, size t n);

volatile void *memcpy v(volatile void *restrict si1,
const volatile void *restrict s2, size t n);

void *memmove (void *sl, const void *s2, size t n);
volatile void *memmove_ v (volatile void *s1,

const volatile void *s2, size t n);

void *memset (void *s, int c, size t n);

char *strcat (char *restrict sl, const char *restrict s2);

int strcmp (const char *sl, const char *s2);

int strcoll (const char *sl, const char *s2);

char *strcpy(char *restrict sl, const char *restrict s2);
size t strcspn(const char *sl, const char *s2);

char *strerror (int errcode) ;

int strerror r(int errnum, char *strerrbuf, size t buflen); [POSIX]
size t strlen(const char *s);

:char *strncat (char * Restrict, const char * Restrict, size t)
_NO_THROW;

int strncmp (const char *, const char *, size t) NO_ THROW;
size t strlcpy(char * Restrict, const char * Restrict, size t)
_NO_THROW;

size t strlcat(char * Restrict, const char * Restrict, size t)
_NO_THROW;

char *strncpy(char * Restrict, const char * Restrict, size t)
_NO_THROW;

size t strspn(const char *sl, const char *s2);

char *strtok(char *restrict sl, const char *restrict s2);
size t strxfrm(char *restrict sl, const char *restrict s2,
size t n);

void *memchr (const void *s, int ¢, size t n); [Notin C++]

const void *memchr (const void *s, int ¢, size t n); [C++only]
void *memchr (void *s, int ¢, size t n); [C++only]

char *strchr (const char *s, int c¢); [Notin C++]

const char *strchr(const char *s, int c¢); [C++only]

char *strchr (char *s, int c¢); [C++only]

char *strpbrk (const char *sl, const char *s2); [Notin C++]
const char *strpbrk(const char *sl, const char *s2); [C++ only]
char *strpbrk(char *sl, const char *s2); [C+tonly]

char *strrchr (const char *s, int c); [Notin C++]

const char *strrchr(const char *s, int c); [C++ only]

80-N2040-13 Rev. D

216

Qualcomm Hexagon C Library User Guide Header files

11.23.1

11.23.2

11.23.3

char *strrchr (char *s, int c); [C++ only]
char *strstr(const char *sl, const char *s2); [Notin C++]

const char *strstr(const char *sl, const char *s2); [C++ only]
char *strstr(char *sl, const char *s2); [C++ only]
int strcasecmp (const char *sl, const char *s2); [POSIX]

int strncasecmp (const char *sl, const char *s2, size t len); [POSIX]
char *strdup (const char *str); [POSIX]
char *strtok r(char *str, const char *sep, char **lasts); [POSIX]

memccpy

void *memccpy (void *dst, const void *src, int ¢, size t len); [POSIX]

The function copies bytes from string src to string dst. If the character c (as converted to an
unsigned char) occurs in string src, the copy stops and a pointer to the byte after the copy of
c in the string dst is returned. Otherwise, len bytes are copied, and a NULL pointer is
returned.

memchr

void *memchr (const void *s, int ¢, size t n); [Notin C++]
const void *memchr (const void *s, int ¢, size t n); [C++only]
void *memchr (void *s, int ¢, size t n); [C++only]

The function searches for the first element of an array of unsigned char, beginning at the
address s with size n, that equals (unsigned char) c. If successful, it returns the address of
the matching element; otherwise, it returns a NULL pointer.

memcmp

int memcmp (const void *sl, const void *s2, size_t n);

The function compares successive elements from two arrays of unsigned char, beginning at
the addresses s1 and s2 (both of size n), until it finds elements that are not equal:

m [fall elements are equal, the function returns zero.

m [fthe differing element from s1 is greater than the element from s2, the function returns a
positive number.

m Otherwise, the function returns a negative number.

80-N2040-13 Rev. D 217

Qualcomm Hexagon C Library User Guide Header files

11.23.4 memcpy

void *memcpy (void *restrict sl, const void *restrict s2, size t n);

The function copies the array of char beginning at the address s2 to the array of char
beginning at the address s1 (both of size n). If copying takes place between arrays that
overlap, the behavior is undefined. The function returns s1.

The order and size of memory accesses used to perform the copy are not specified.

NOTE: In certain cases, memcpy might generate a Hexagon processor cache exception. If this
occurs, use the memcpy v function instead.

11.23.5 memcpy_v

volatile void *memcpy v(volatile void *restrict si,
const volatile void *restrict s2,
size t n);

The function copies the array of char beginning at the address s2 to the array of char
beginning at the address s1 (both of size n). If copying takes place between arrays that
overlap, the behavior is undefined. The function returns s1.

The order and size of memory accesses used to perform the copy are not specified.

NOTE: memcpy v (unlike memcpy) does not access memory more than once per instruction
packet, and therefore it is guaranteed to not generate exception 0x28 in Hexagon
processor V2 and V3.

11.23.6 memmove

void *memmove (void *sl, const void *s2, size t n);

The function copies the array of char beginning at s2 to the array of char beginning at s1
(both of size n). It returns s1. If copying takes place between arrays that overlap, the function
accesses each of the element values from s2 before it stores a new value in that element, so the
copy is not corrupted.

The order and size of memory accesses used to perform the copy are not specified.

NOTE: In certain cases, memmove might generate a Hexagon processor cache exception. If this
occurs use the memmove v function instead.

80-N2040-13 Rev. D 218

Qualcomm Hexagon C Library User Guide Header files

11.23.7 memmove_v

volatile void *memmove v (volatile void *s1,
const volatile void *s2, size t n);

The function copies the array of char beginning at s2 to the array of char beginning at s1
(both of size n). It returns s1. If copying takes place between arrays that overlap, the function
accesses each of the element values from s2 before it stores a new value in that element, so the
copy is not corrupted.

The order and size of memory accesses used to perform the copy are not specified.

NOTE: memmove v (unlike memmove) does not access memory more than once per instruction
packet, and therefore is guaranteed to not generate exception 0x28 in Hexagon
processor V2 and V3.

11.23.8 memset

void *memset (void *s, int c, size t n);

The function stores (unsigned char)c in each of the elements of the array of unsigned char
beginning at s, with size n. It returns s.

11.23.9 NULL

#define NULL <either 0, OL, or (void #*)0> [0in C++]

The macro yields a NULL pointer constant that is usable as an address constant expression.

11.23.10size_t

typedef ui-type size t;

The type is the unsigned integer type ui-type of an object that you declare to store the result
of the sizeof operator.

11.23.11strcasecmp

int strcasecmp (const char *sl, const char *s2); [POSIX]

The function compares the NULL-terminated strings s1 and s2 and returns an integer greater
than, equal to, or less than 0, according to whether s1 is lexicographically greater than, equal
to, or less than s2 after translation of each corresponding character to lowercase. The strings
themselves are not modified. The comparison is done using unsigned characters, so that \200
is greater than \ 0.

80-N2040-13 Rev. D 219

Qualcomm Hexagon C Library User Guide Header files

11.23.12strcat

char *strcat (char *restrict sl, const char *restrict s2);

The function copies string s2, including its terminating NULL character, to successive
elements of the array of char that stores string s1, beginning with the element that stores the
terminating NULL character of s1. It returns s1.

11.23.13strchr

char *strchr (const char *s, int c¢); [Notin C++]
const char *strchr(const char *s, int c¢); [C++ only]
char *strchr(char *s, int c); [C++ only]

The function searches for the first element of string s that equals (char) c. It considers the
terminating NULL character as part of the string. If successful, the function returns the address
of the matching element; otherwise, it returns a NULL pointer.

11.23.14strcmp

int strcmp (const char *sl, const char *s2);

The function compares successive elements from two strings, s1 and s2, until it finds
elements that are not equal.

m Ifall elements are equal, the function returns zero.

m [f the differing element from s1 is greater than the element from s2 (both taken as
unsigned char), the function returns a positive number.

m Otherwise, the function returns a negative number.

11.23.15strcoll

int strcoll (const char *sl, const char *s2);

The function compares two strings, s1 and s2, using a comparison rule that depends on the
current locale. If s1 compares greater than s2 by this rule, the function returns a positive
number. If the two strings compare equal, it returns zero. Otherwise, it returns a negative
number.

11.23.16strcpy

char *strcpy(char *restrict sl, const char *restrict s2);

The function copies string s2, including its terminating NULL character, to successive
elements of the array of char whose first element has the address s1. It returns s1.

80-N2040-13 Rev. D 220

Qualcomm Hexagon C Library User Guide Header files

11.23.17strcspn

size t strcspn(const char *sl, const char *s2);

The function searches for the first element s1 [i] in string s1 that equals any one of the
elements of string s2 and returns i. Each terminating NULL character is considered part of its
string.

11.23.18strdup

char *strdup (const char *str); [POSIX]

The function allocates sufficient memory for a copy of string st r, does the copy, and returns a
pointer to it. The pointer may subsequently be used as an argument to the function free.

If insufficient memory is available, NULL is returned.

The following example points p to an allocated area of memory containing the NULL-
terminated string "foobar":

char *p;

if ((p = strdup("foobar")) == NULL) {
fprintf (stderr, "Out of memory.\n");
exit (1) ;

}

NOTE: The strdup function might fail and set the external variable errno for any of the
errors specified for the library function malloc.

11.23.19strerror

char *gstrerror (int errcode) ;

The function returns a pointer to an internal static-duration object containing the message
string corresponding to the error code errcode. The program must not alter any of the values
stored in this object. A later call to strerror can alter the value stored in this object.

11.23.20strerror_r

int strerror r(int errnum, char *strerrbuf, size t buflen); [POSIX]

The function is the re-entrant version of strerror. It can be re-entered while it is running. It
renders the same result into strerrbuf for a maximum of buflen characters and returns 0
upon success.

80-N2040-13 Rev. D 221

Qualcomm Hexagon C Library User Guide Header files

11.23.21stricat

size t
strlcat (char * restrict dst, const char * restrict src,
size t dstsize);

The function concatenates strings with the same input parameters and output result
as snprintf. This function is a safer, more consistent, and less error prone replacement the
easily misused function, strncat.

11.23.22stricpy

size t
strlcpy(char * restrict dst, const char * restrict src,
size t dstsize);

The function copies strings with the same input parameters and output result as snprintf.
This function is a safer, more consistent, and less error prone replacement the easily misused
function, strncpy.

11.23.23strlen

size_t strlen(const char *s);

The function returns the number of characters in string s, not including its terminating NULL
character.

11.23.24strncasecmp

int strncasecmp (const char *sl, const char *s2, size t len); [POSIX]

The function compares the NULL-terminated strings s1 and s2 and returns an integer greater
than, equal to, or less than 0, according to whether s1 is lexicographically greater than, equal
to, or less than s2 after translation of each corresponding character to lowercase. The strings
themselves are not modified. The comparison is done using unsigned characters, so that \200
is greater than \ 0.

The function compares, at most, 1en characters.

NOTE: If len is zero, strncasecmp always returns 0.

80-N2040-13 Rev. D 222

Qualcomm Hexagon C Library User Guide Header files

11.23.25strncat

char *strncat (char *restrict sl, const char *restrict s2, size t n);

The function copies string s2, not including its terminating NULL character, to successive
elements of the array of char that stores string s1, beginning with the element that stores the
terminating NULL character of s1. The function copies no more than n characters from s2. It
then stores a NULL character, in the next element to be altered in s1, and returns s1.

11.23.26strncmp

int strncmp (const char *sl, const char *s2, size t n);

The function compares successive elements from two strings, s1 and s2, until it finds
elements that are not equal or until it has compared the first n elements of the two strings.

m Ifall elements are equal, the function returns zero.

m [f the differing element from s1 is greater than the element from s2 (both taken as
unsigned char), the function returns a positive number.

m Otherwise, it returns a negative number.

11.23.27strncpy

char *strncpy(char *restrict sl, const char *restrict s2, size t n);

The function copies string s2, not including its terminating NULL character, to successive
elements of the array of char whose first element has the address s1. It copies no more than n
characters from s2. The function then stores zero or more NULL characters in the next
elements to be altered in sluntil it stores a total of n characters. It returns s1.

11.23.28strpbrk

char *strpbrk (const char *sl, const char *s2); [Notin C++]
const char *strpbrk(const char *sl, const char *s2); [C++only]
char *strpbrk(char *sl, const char *s2); [C++ only]

The function searches for the first element s1 [1] in string s1 that equals any one of the
elements of string s2. It considers each terminating NULL character as part of its string. If
s1[i] is not the terminating NULL character, the function returns &s1 [i]; otherwise, it
returns a NULL pointer.

80-N2040-13 Rev. D 223

Qualcomm Hexagon C Library User Guide Header files

11.23.29strrchr

char *strrchr (const char *s, int c); [Notin C++]
const char *strrchr(const char *s, int c¢); [C++only]
char *strrchr(char *s, int c¢); [C++ only]

The function searches for the last element of string s that equals (char) c. It considers the
terminating NULL character as part of the string. If successful, the function returns the address
of the matching element; otherwise, it returns a NULL pointer.

11.23.30strspn

size t strspn(const char *sl, const char *s2);

The function searches for the first element s1[i] in string s1 that equals none of the elements
of string s2 and returns i. It considers the terminating NULL character as part of string s1
only.

11.23.31strstr

char *strstr(const char *sl, const char *s2); [Notin C++]
const char *strstr(const char *sl, const char *s2); [C++only]
char *strstr(char *sl, const char *s2); [C++ only]

The function searches for the first sequence of elements in string s1 that matches the sequence
of elements in string s2, not including its terminating NULL character. If successful, the
function returns the address of the matching first element; otherwise, it returns a NULL
pointer.

11.23.32strtok

char *gstrtok(char *restrict sl, const char *restrict s2);

If s1 is not a NULL pointer, the function begins a search of string s1. Otherwise, it begins a
search of the string whose address was last stored in an internal static-duration object on
an earlier call to the function, as described below. The search proceeds as follows:

m The function searches the string for begin, the address of the first element that equals none
of the elements of string s2 (a set of token separators). It considers the terminating NULL
character as part of the search string only.

m [f the search does not find an element, the function stores the address of the terminating
NULL character in the internal static-duration object (so that a subsequent search
beginning with that address will fail) and returns a NULL pointer. Otherwise, the function
searches from begin for end, the address of the first element that equals any one of the
elements of string s2. It again considers the terminating NULL character as part of the
search string only.

80-N2040-13 Rev. D 224

Qualcomm Hexagon C Library User Guide Header files

m If the search does not find an element, the function stores the address of the terminating
NULL character in the internal static-duration object. Otherwise, it stores a NULL
character in the element whose address is end. Then it stores the address of the next
element after end in the internal static-duration object (so that a subsequent search
beginning with that address will continue with the remaining elements of the string) and
returns begin.

11.23.33strtok_r

char *strtok r(char *str, const char *sep, char **lasts); [POSIX]

The function is used to isolate sequential tokens in a NULL-terminated string, str. These
tokens are separated in the string by at least one of the characters in sep. The first time that
strtok_r is called, str should be specified; subsequent calls, wishing to obtain further
tokens from the same string, should pass a NULL pointer instead. The separator string, sep,
must be supplied each time, and may change between calls.

The function returns a pointer to the beginning of each subsequent token in the string, after
replacing the separator character itself with a NULL character. Separator characters at the
beginning of the string or at the continuation point are skipped so that zero length tokens are
not returned. When no more tokens remain, a NULL pointer is returned.

The function is also passed the argument 1asts, which points to a user-provided pointer that is
used by strtok r to store any state which needs to be kept between calls to scan the same
string; it is not necessary to delineate tokenizing to a single string at a time when using
strtok r.

For example, the following will construct an array of pointers to each individual word in
string s:
#define MAXTOKENS 128

char s[512], *p, *tokens[MAXTOKENS] ;
char *last;

int i = 0;
snprintf (s, sizeof(s), "cat dog horse cow");
for ((p = strtok r(s, " ", &last)); p;
(p = strtok r(NULL, " ", &last)), i++) {
if (i < MAXTOKENS - 1)
tokens[i] = p;
!
tokens[i] = NULL;
That is:

m tokens[0] will pointto "cat"
m tokens[1] will point to "dog"
m tokens[2] will point to "horse"

m tokens[3] will pointto "cow"

80-N2040-13 Rev. D 225

Qualcomm Hexagon C Library User Guide Header files

11.23.34strxfrm

size t strxfrm(char *restrict sl, const char *restrict s2,
size t n);

The function stores a string in the array of char whose first element has the address s1. It
stores no more than n characters, including the terminating NULL character, and returns the
number of characters needed to represent the entire string, not including the terminating
NULL character. If the value returned is n or greater, the values stored in the array are
indeterminate. (If n is zero, s1 can be a NULL pointer.)

The function generates the string it stores from string s2 by using a transformation rule that
depends on the current locale. For example, if x is a transformation of s1 and y is a
transformation ofs2, then strcmp (x, y) returns the same value as strcoll (s1, s2).

80-N2040-13 Rev. D 226

Qualcomm Hexagon C Library User Guide Header files

11.24

11.24.1

11.24.2

11.24.3

11.24.4

<strings.h>

The <strings.hs header contains functions for manipulating strings.

int bemp (const void *bl, const void *b2, size t len); [POSIX]
void bcopy (const void *src, void *dst, size t len); [POSIX]
void bzero(void *b, size t len); [POSIX]

int ffs(int value); [POSIX]

char *index(const char *s, int c¢); [POSIX]
char *rindex(const char *s, int c¢); [POSIX]

bcmp
int bemp (const void *bl, const void *b2, size t len); [POSIX]

The function compares byte string b1 against byte string b2, returning zero if they are identical
or nonzero otherwise. Both strings are assumed to be 1en bytes long. Zero-length strings are
always identical. The strings can overlap.

bcopy

void bcopy (const void *src, void *dst, size t len); [POSIX]

The function copies len bytes from string src to string dst. The two strings can overlap. If
len is zero, no bytes are copied.

bzero
void bzero(void *b, size t len); [POSIX]

The function writes 1en zero bytes to the string b. If 1en is zero, bzero does nothing.

ffs

int ffs(int value); [POSIX]

The function finds the first bit set in value and returns the index of that bit. Bits are numbered
starting from 1, starting at the right-most bit. A return value of 0 means that the argument was
Zero.

80-N2040-13 Rev. D 227

Qualcomm Hexagon C Library User Guide Header files

11.24.5 index

char *index(const char *s, int c¢); [POSIX]

The index function locates the first character matching ¢ (converted to a char) in the NULL-
terminated string s. A pointer to the character is returned if it is found; otherwise NULL is
returned. If c is *\0’, index locates the terminating *\o".

11.24.6 rindex

char *rindex(const char *s, int c¢); [POSIX]

The function locates the last character matching ¢ (converted to a char) in the NULL-
terminated string s. A pointer to the character is returned if it is found; otherwise NULL is
returned. If c is *\0’, rindex locates the terminating *\0".

80-N2040-13 Rev. D 228

Qualcomm Hexagon C Library User Guide Header files

11.25 <sys/stat.h>

Include the system header <sys/stat .h> to define several macros and a host of functions for
use with file query operations.

int

stat (const char *path, struct stat *sb); [POSIX]

stat

int

stat (const char *path, struct stat *sb); [POSIX]

The stat () function obtains information about the file pointed to by path. Read, write or
execute permission of the named file is not required, but all directories listed in the path name
leading to the file must be searchable.

The sb argument is a pointer to a stat structure as defined by <sys/stat.h> (shown below)
and into which information is placed concerning the file.

For example:

struct stat {

#if

dev_t st_dev; /* device containing the file */

ino t st_ino; /* file's serial number */

mode_ t st _mode; /* file's mode (protection and type) */
nlink t st nlink; /* number of hard links to the file */

uid t st _uid; /* user-id of owner */

gid t st_gid; /* group-id of owner */

dev_t st_rdev; /* device type, for device special file */

defined (NETBSD SOURCE)
struct timespec st _atimespec; /* time of last access */
struct timespec st mtimespec; /* time of last data modification

*/
struct timespec st ctimespec; /* time of last file status change
*/
#else
time t st_atime; /* time of last access */
long st_atimensec; /* nsec of last access */
time t st_mtime; /* time of last data modification */
long st _mtimensec; /* nsec of last data modification */
time t st_ctime; /* time of last file status change */
long st _ctimensec; /* nsec of last file status change */
#endif
off t st _size; /* file size, in bytes */
blkent t st blocks; /* blocks allocated for file */
blksize t st blksize; /* optimal file sys I/O ops blocksize */
uint32 t st _flags; /* user defined flags for file */
uint32 t st _gen; /* file generation number */
#if defined(NETBSD_ SOURCE)
struct timespec st birthtimespec; /* time of inode creation */
#else
time t st_birthtime; /* time of inode creation */
long st _birthtimensec; /* nsec of inode creation */
#endif
}i

80-N2040-13 Rev. D

229

Qualcomm Hexagon C Library User Guide

Header files

Table 11-7 lists the time-related fields of the struct stat.

Table 11-7 stat time-related fields

Field Description

st_atime Time when file data was last accessed.
Changed by the mknod, utimes, and read system calls.

st_mtime Time when file data was last modified.
Changed by the mknod, utimes, and write system calls.

st_ctime Time when file status was last changed (file metadata modification).
Changed by the chflags, chmod, chown, 1ink, mknod, rename, unlink,
utimes, and write system calls.

st_birthtime Time when the inode was created.

If NETBSD SOURCE is defined, the time-related fields are defined as:

#if defined(NETBSD SOURCE)

#define
#define
#define
#define
#define
#define
#define
#define
#endif

st_atime
st _atimensec
st _mtime
st _mtimensec
st _ctime

st ctimensec
st _birthtime
st _birthtimensec

st_atimespec.
st_atimespec.
st _mtimespec.
st _mtimespec.
st _ctimespec.

tv_sec
tv_nsec
tv_sec
tv_nsec
tv_sec

st _ctimespec.

tv_nsec

st _birthtimespec.tv_sec
st _birthtimespec.tv_nsec

Table 11-8 lists the size-related fields of the struct stat.

Table 11-8 stat size-related fields

Field

Description

st_size

The size of the file in bytes.

A directory will be a multiple of the size of the dirent structure. Some file
systems (notably ZFS) return the number of entries in the directory instead
of the size in bytes.

st_blksize

The optimal input/output block size for the file.

st_blocks

Zero.

The actual number of blocks allocated for the file in 512-byte units.
Because short symbolic links are stored in the inode, this number might be

The status information word st _mode has the following bits:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

S _IFMT 0170000
S IFIFO
S_IFCHR
S IFDIR
S IFBLK
S IFREG
S_IFLNK
S_IFSOCK
S_IFWHT

S_ISUID 0004000

0010000
0020000
0040000
0060000
0100000
0120000
0140000
0160000
/* set

/* type of file */

/* named pipe (fifo) */
/* character special */
/* directory */

/* block special */

/* regular */

/* symbolic link */

/* socket */

/* whiteout */

user id on execution */

80-N2040-13 Rev. D

230

Qualcomm Hexagon C Library User Guide

Header files

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

S _ISGID
S ISVTX
S IRUSR
S_IWUSR
S IXUSR
S_IRGRP
S_IWGRP
S_IXGRP
S_IROTH
S_IWOTH
S IXOTH

0002000 /* set group id on execution */
0001000 /* save swapped text even after use */
0000400 /* read permission, owner */

0000200 /* write permission, owner */

0000100 /* execute/search permission, owner */
0000040 /* read permission, group */

0000020 /* write permission, group */

0000010 /* execute/search permission, group */
0000004 /* read permission, other */

0000002 /* write permission, other */

0000001 /* execute/search permission, other */

The status information word st_f1lags has the following bits:

#define
#define
#define
#define
#define
#define
#define

UF_NODUMP 0x00000001
UF_IMMUTABLE 0x00000002
UF_APPEND 0x00000004
UF_OPAQUE 0x00000008
SF _ARCHIVED 0x00010000

SF _IMMUTABLE 0x00020000
SF_APPEND 0x00040000

/*
/*
/*
/*
/*
/*
/*

do not dump file */

file may not be changed */
writes file may only append */
directory is opaque wrt union */
file is archived */

file may not be changed */
writes file may only append */

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

80-N2040-13 Rev. D

231

Qualcomm Hexagon C Library User Guide Header files

11.26 <sys/time.h>

Include the system header <sys/time.h> to define a timeval structure and the
gettimeofday function.

struct timeval ({

time t tv_sec; /* seconds since Jan. 1, 1970 */
suseconds_t tv_usec; /* and microseconds */
Vi
struct timezone (
int tz minuteswest; /* of Greenwich */
int tz dsttime; /* type of dst correction to apply
}i
int gettimeofday(struct timeval * restrict tp, void * restrict tzp);
[POSIX]
gettimeofday
int gettimeofday(struct timeval * restrict tp, void * restrict tzp);
[POSIX]

Time zone information is no longer provided by this interface. For information on how to
retrieve it, see localtime.

The system’s notion of the current UTC time is obtained with the gettimeofday call. The
time is expressed in seconds and microseconds since midnight (0 hour), January 1, 1970. The
resolution of the system clock is hardware dependent, and the time might be updated
continuously or in ticks. If tp is NULL, the time will not be returned or set. Despite being
declared void =, the objects pointed to by t zp shall be of type struct timezone.

The timezone structure is provided only for source compatibility. get t imeofday will always
return zeroes.

80-N2040-13 Rev. D 232

Qualcomm Hexagon C Library User Guide Header files

11.27 <sysl/times.h>

Include the system header <sys/times.h> to define the tms structure and the t imes function
prototype.

struct tms {
clock_t tms_utime;
clock t tms_stime;
clock t tms_cutime;
clock t tms_cstime;

}i

clock t times(struct tms *buffer); [POSIX]
times
clock t times(struct tms *buffer); [POSIX]

This interface is obsoleted by gettimeofday.

The times function returns the value of time in clock ticks since 0 hours, 0 minutes, 0 seconds,
January 1, 1970, Coordinated Universal Time (UTC).

The number of clock ticks per second can be determined by calling sysconf with the
_SC_CLK_TCK request. It is typically (but not always) between 60 and 1024.

At the common rate of 100 ticks per second on many NetBSD ports and with a 32-bit unsigned
clock t, this value first wrapped in 1971.

The times call also fills in the structure pointed to by buffer with time accounting information.

Table 11-9 10-9 lists the elements of the tms structure.

Table 11-9 tms structure elements

Element Description
tms_utime The CPU time charged for the execution of user instructions.
tms_stime The CPU time charged for execution by the system on behalf of the
process.
tms_cutime The sum of the tms_utime s and tms_cutime s of the child processes.
tms_cstime The sum of the tms_stimes and tms_cstimes of the child processes.

All times are measured in clock ticks, as defined above. At 100 ticks per second, and with a
32-bit unsigned clock_t, the values wrap after 497 days.

The times of a terminated child process are included in the tms_cutime and tms_cstime
elements of the parent when one of the wait functions returns the process ID of the terminated
child to the parent. If an error occurs, times returns the value ((clock t)-1), and sets errno
to indicate the error.

80-N2040-13 Rev. D 233

Qualcomm Hexagon C Library User Guide Header files

11.28 <tgmath.h>

[Added with C99]

Include the standard header <tgmath> to define several families of generic functions. A
generic function has the same name for two or more distinct parameter lists, as in:

float _Complex fc;
long double 14d;

cos (1) // same as cos((double) 1)

cos (1d) // same as cosl (1d)

pow (fc, 1d) // same as cpowl((long double Complex)fc,
(long double Complex)1d)

The actual (non-generic) function called depends on the type of the actual argument on a
function call:

m For a function argument that can have a floating point type, an integer argument is
converted (by a type cast) to double before determining the function to call.

m For a function with two or more arguments, the arguments are each converted as above,
and then converted (by a type cast) to the type of the sum of all the arguments before
determining the function to call.

The actual function called is the one whose parameters exactly match the type of the converted
argument.

NOTE: C++ adds sufficient overloads (not shown here) to provide the same conversion rules.
In this implementation, these overloads are declared in <math.h> and <complex.hs,
and hence are present whether or not you include <tgmath.hs>.

#include <complex.h>
#include <math.h>

/* FUNCTIONS */

double acos (double x) ;

float acos(float x);

long double acos(long double x) ;

double Complex acos (double Complex x) ;

float Complex acos(float Complex x);

long double Complex acos(long double Complex Xx);

double acosh(double Xx) ;

float acosh(float x);

long double acosh(long double x);

double Complex acosh(double Complex x);

float Complex acosh(float _Complex x);

long double Complex acosh(long double Complex x);

double asin(double x);

float asin(float x);

long double asin(long double x);

double Complex asin(double Complex x) ;

float Complex asin(float Complex x) ;

long double Complex asin(long double Complex Xx);

80-N2040-13 Rev. D 234

Qualcomm Hexagon C Library User Guide Header files

double asinh(double Xx) ;

float asinh(float x);

long double asinh(long double x);

double _Complex asinh(double _Complex x);

float Complex asinh(float _Complex x);

long double Complex asinh(long double Complex x);

double atan (double x) ;

float atan(float x);

long double atan(long double x);

double Complex atan(double Complex x) ;

float Complex atan(float Complex x) ;

long double Complex atan(long double Complex x);

double atan2 (double y, double x);
float atan2(float y, float x);
long double atan2(long double y, long double x);

double atanh (double x);

float atanh(float x);

long double atanh(long double x);

double Complex atanh(double Complex x) ;

float Complex atanh(float Complex x);

long double Complex atanh(long double Complex x) ;

double carg(double Complex x);
float carg(float Complex x) ;
long double carg(long double Complex x) ;

double ceil (double x);
float ceil (float x);
long double ceil (long double x);

double cbrt (double x) ;
float cbrt(float x);
long double cbrt (long double x);

double cimag(double Complex x) ;
float cimag(float Complex x);
long double cimag(long double Complex x);

double Complex conj (double Complex Xx) ;
float Complex conj(float Complex x);
long double Complex conj(long double Complex Xx);

double cos (double x) ;

float cos(float x);

long double cos(long double x);

double Complex cos (double Complex x) ;

float Complex cos(float Complex x);

long double Complex cos (long double Complex x);

double copysign(double x, double vy);
float copysign(float x, float vy);
long double copysign(long double x, long double vy);

80-N2040-13 Rev. D 235

Qualcomm Hexagon C Library User Guide Header files

double Complex cproj (double Complex x) ;
float Complex cproj (float _Complex Xx);
long double Complex cproj (long double Complex x);

double cosh(double x) ;

float cosh(float x);

long double cosh(long double x) ;

double Complex cosh(double Complex x) ;

float Complex cosh(float Complex x) ;

long double Complex cosh(long double Complex Xx);

double creal (double Complex x);
float creal (float Complex x);
long double creal (long double Complex x);

double erf (double x) ;
float erf (float x);
long double erf (long double x);

double erfc(double x);
float erfc(float x);
long double erfc(long double x);

double exp (double x);

float exp(float x);

long double exp(long double x);

double Complex exp (double Complex x);

float Complex exp(float Complex x);

long double Complex exp (long double Complex x);

double exp2 (double x) ;
float exp2(float x);
long double exp2(long double x);

double expml (double x) ;
float expml (float x);
long double expml (long double x);

double fabs (double x) ;

float fabs(float x);

long double fabs(long double x) ;

double fabs (double _Complex x) ;

float fabs(float Complex x) ;

long double fabs(long double Complex x);

double fdim(double x, double y);
float fdim(float x, float vy);
long double fdim(long double x, long double vy);

double floor (double x);
float floor (float x);
long double floor (long double x);

double fma(double x, double y, double z);
float fma (float x, float y, float z);

80-N2040-13 Rev. D 236

Qualcomm Hexagon C Library User Guide Header files

long double fma (long double x, long double y, long double z);

double fmax(double x, double y);
float fmax(float x, float y);
long double fmax(long double x, long double y);

double fmin(double x, double y);
float fmin(float x, float y);
long double fmin(long double x, long double vy);

double fmod (double x, double y);
float fmod(float x, float vy);
long double fmod(long double x, long double vy);

double frexp (double x, int *pexp) ;
float frexp(float x, int *pexp) ;
long double frexp(long double x, int *pexp);

double hypot (double x, double y);
float hypot (float x, float y);
long double hypot (long double x, long double vy);

int ilogb (double x);
int ilogb(float x);
int ilogb(long double x) ;

double ldexp(double x, int ex);
float ldexp(float x, int ex);
long double ldexp (long double x, int ex);

double lgamma (double x) ;
float lgamma (float x) ;
long double lgamma (long double x) ;

long long llrint (double x);
long long llrint (float x);
long long llrint (long double x);

long long llround(double x) ;
long long llround(float x);
long long llround(long double x);

double log(double x) ;

float log(float x);

long double log(long double x);

double Complex log(double Complex x) ;

float Complex log(float Complex x);

long double Complex log(long double Complex x);

double 1loglO (double x) ;
float loglo0 (float x);
long double loglO (long double x);

double loglp(double x);
float loglp(float x);
long double loglp(long double x);

80-N2040-13 Rev. D 237

Qualcomm Hexagon C Library User Guide Header files

double log2 (double x) ;
float log2(float x);
long double log2(long double x) ;

double logb (double x) ;
float logb(float x);
long double logb(long double x) ;

long lrint (double x) ;
long lrint(float x);
long lrint (long double x);

long lround (double x) ;
long lround(float x);
long lround(long double x);

double modf (double x, double *pint) ;
float modf (float x, float *pint);
long double modf (long double x, long double *pint) ;

double nearbyint (double x) ;
float nearbyint (float x);
long double nearbyint (long double x);

double nextafter (double x, double vy);
float nextafter(float x, float y);
long double nextafter (long double x, long double y);

double nexttoward (double x, long double y);
float nexttoward(float x, long double y);
long double nexttoward(long double x, long double y) ;

double pow (double x, double Vy);

float pow(float x, float vy);

long double pow(long double x, long double vy);
double Complex pow(double Complex x) ;

float Complex pow(float Complex x);

long double Complex pow(long double Complex x);

double remainder (double x, double y);
float remainder (float x, float y);
long double remainder (long double x, long double y);

double remquo (double x, double y, int *pquo) ;
float remquo(float x, float y, int *pquo) ;
long double remquo (long double x, long double y, int *pquo) ;

double rint (double x);
float rint (float x);
long double rint (long double x);

double round (double x) ;
float round(float x);
long double round(long double x);

80-N2040-13 Rev. D 238

Qualcomm Hexagon C Library User Guide Header files

double scalbln(double x, long ex);

float scalbln(float x, long ex);

long double scalbln(long double x, long ex);
double scalbn(double x, int ex);

float scalbn(float x, int ex);

long double scalbn(long double x, int ex);

double sin(double x) ;

float sin(float x);

long double sin(long double x);

double Complex sin(double Complex x) ;

float Complex sin(float Complex x);

long double Complex sin(long double Complex x);

double sinh (double x) ;

float sinh(float x);

long double sinh(long double x) ;

double Complex sinh(double Complex Xx) ;

float _Complex sinh(float _Complex x) ;

long double Complex sinh(long double Complex Xx) ;

double sqgrt (double x);

float sqgrt(float x);

long double sqgrt (long double x);

double Complex sgrt (double Complex x) ;

float Complex sqgrt(float Complex x) ;

long double Complex sgrt(long double Complex Xx) ;

double tan(double x) ;

float tan(float x);

long double tan(long double x);

double Complex tan(double Complex x);

float Complex tan(float Complex x);

long double Complex tan(long double Complex x);

double tanh (double x) ;

float tanh(float x);

long double tanh(long double x);

double Complex tanh(double Complex Xx) ;

float _Complex tanh(float _Complex x) ;

long double Complex tanh(long double Complex Xx);

double tgamma (double x) ;
float tgamma (float x) ;
long double tgamma (long double x) ;

double trunc(double x);
float trunc(float x);
long double trunc(long double x);

80-N2040-13 Rev. D 239

Qualcomm Hexagon C Library User Guide Header files

11.28.1 acos

double acos (double x) ;

float acos(float x);

long double acos(long double x);

double Complex acos (double Complex x) ;

float Complex acos(float Complex x);

long double Complex acos(long double Complex X);

The function returns the arccosine of x.

11.28.2 acosh

double acosh(double x) ;

float acosh(float x);

long double acosh(long double x);

double Complex acosh(double Complex x);

float Complex acosh(float Complex x);

long double Complex acosh(long double Complex Xx) ;

The function returns the hyperbolic arccosine of x.

11.28.3 carg

double carg(double Complex x);
float carg(float Complex x) ;
long double carg(long double Complex x) ;

The function returns the phase angle of x.

11.28.4 asin

double asin(double x);

float asin(float x);

long double asin(long double x);

double Complex asin(double Complex x) ;

float Complex asin(float Complex x) ;

long double Complex asin(long double Complex x);

The function returns the arcsine of x.

11.28.5 asinh

double asinh(double x);

float asinh(float x);

long double asinh(long double x);

double Complex asinh(double Complex x);

float Complex asinh(float _Complex x);

long double Complex asinh(long double Complex x);

The function returns the hyperbolic arcsine of x.

80-N2040-13 Rev. D 240

Qualcomm Hexagon C Library User Guide

Header files

11.28.6 atan

double atan (double x) ;

float atan(float x);

long double atan(long double x);

double Complex atan(double Complex x) ;

float Complex atan(float Complex x);

long double Complex atan(long double Complex Xx) ;

The function returns the arctangent of x.

11.28.7 atan2

double atan2 (double y, double x);
float atan2(float y, float x);
long double atan2 (long double y, long double x);

The function returns the angle whose tangent is y/x, in the full angular range [-pi, +pi]

radians. A domain error might occur if both x and y are zero.

11.28.8 atanh

double atanh(double Xx) ;

float atanh(float x);

long double atanh(long double x);

double Complex atanh(double Complex x) ;

float Complex atanh(float Complex x);

long double Complex atanh(long double Complex x);

The function returns the hyperbolic arctangent of x.

11.28.9 cbrt

double cbrt (double x) ;
float cbrt(float x);
long double cbrt(long double x) ;

The function returns the real cube root of x,x" (1/3).

11.28.10ceil

double ceil (double x);
float ceil(float x);
long double ceil (long double x);

The function returns the smallest integer value not less than x.

80-N2040-13 Rev. D

241

Qualcomm Hexagon C Library User Guide Header files

11.28.11cimag

double cimag(double Complex x) ;
float cimag(float Complex x);
long double cimag(long double Complex x);

The function returns the imaginary part of x.

11.28.12conj

double Complex conj (double Complex Xx) ;
float Complex conj(float Complex x);
long double Complex conj(long double Complex Xx) ;

The function returns the conjugate of x.

11.28.13copysign

double copysign(double x, double vy);
float copysign(float x, float vy);
long double copysign (long double x, long double vy);

The function returns x, with its sign bit replaced from v.

11.28.14cos

double cos (double x) ;

float cos(float x);

long double cos(long double x);

double _Complex cos(double _Complex Xx);

float Complex cos(float Complex x);

long double Complex cos (long double Complex x);

The function returns the cosine of x.

11.28.15cosh

double cosh (double x) ;

float cosh(float x);

long double cosh(long double x);

double Complex cosh(double Complex x) ;

float Complex cosh(float Complex x) ;

long double Complex cosh(long double Complex x);

The function returns the hyperbolic cosine of x.

80-N2040-13 Rev. D 242

Qualcomm Hexagon C Library User Guide Header files

11.28.16¢proj

double Complex cproj (double Complex x) ;
float Complex cproj (float Complex x);
long double Complex cproj (long double Complex Xx) ;

The function returns a projection of x onto the Riemann sphere. Specifically, if either
component of x is an infinity of either sign, the function returns a value whose real part is
positive infinity and whose imaginary part is zero with the same sign as the imaginary part of
x. Otherwise, the function returns x.

11.28.17creal

double creal (double Complex x);
float creal (float Complex x);
long double creal (long double Complex x);

The function returns the real part of x.

11.28.18erf

double erf (double x) ;
float erf (float x);
long double erf (long double x);

The function returns the error function of x.

11.28.19erfc

double erfc(double x);
float erfc(float x);
long double erfc(long double x);

The function returns the complementary error function of x.

11.28.20exp

double exp (double x) ;

float exp(float x);

long double exp(long double x);

double Complex exp (double Complex x);

float Complex exp(float Complex x);

long double Complex exp (long double Complex x);

The function returns the exponential of x, e”x.

80-N2040-13 Rev. D 243

Qualcomm Hexagon C Library User Guide Header files

11.28.21exp2

double exp2 (double x);
float exp2(float x);
long double exp2(long double x);

The function returns two raised to the power x, 2"x.

11.28.22expm1

double expml (double x) ;
float expml (float x);
long double expml (long double x) ;

The function returns one less than the exponential function of x, e*x - 1.

11.28.23fabs

double fabs (double x) ;

float fabs(float x);

long double fabs(long double x);

double fabs (double Complex x) ;

float fabs(float Complex x);

long double fabs(long double Complex x);

The function returns the magnitude of x, |x]|.

11.28.24fdim

double fdim(double x, double y);
float fdim(float x, float y);
long double fdim(long double x, long double y);

The function returns the larger of x - y and zero.

11.28.25floor

double floor (double x) ;
float floor (float x);
long double floor (long double x);

The function returns the largest integer value not greater than x.

11.28.26fma

double fma (double x, double y, double z);
float fma (float x, float y, float z);
long double fma(long double x, long double y, long double z);

The function returns x * y + z, to arbitrary intermediate precision.

80-N2040-13 Rev. D 244

Qualcomm Hexagon C Library User Guide Header files

11.28.27fmax

double fmax (double x, double y);
float fmax(float x, float vy);
long double fmax(long double x, long double vy);

The function returns the larger (more positive) of x and y

11.28.28fmin

double fmin (double x, double y);
float fmin(float x, float y);
long double fmin(long double x, long double y);

The function returns the smaller (more negative) of x and y.

11.28.29fmod

double fmod (double x, double y);
float fmod(float x, float vy);
long double fmod(long double x, long double vy);

The function returns the remainder of x/v, which is defined as follows:
m Ify is zero, the function either reports a domain error or simply returns zero.
m Otherwise, if 0 <= x,the valueis x - i*y for some integer i such that:
0 <= i*|y| <= x < (i + 1)*|y]
m Otherwise, x < 0 and the valueis x - i*y for some integer i such that:

i*|y| <= x < (1 + 1)*|y| <=0

11.28.30frexp

double frexp(double x, int *pexp) ;
float frexp(float x, int *pexp);
long double frexp(long double x, int *pexp);

The function determines a fraction frac and an exponent integer ex that represent the value
of x. It returns the value frac and stores the integer ex in *pexp, such that:

|frac| is in the interval [1/2, 1) or is zero
x == frac * 2%ex

If x is zero, *pexp is also zero.

80-N2040-13 Rev. D 245

Qualcomm Hexagon C Library User Guide Header files

11.28.31hypot

double hypot (double x, double y);
float hypot (float x, float vy);
long double hypot (long double x, long double vy);

The function returns the square root of x*2 + y™*2.

11.28.32ilogb

int ilogb (double x) ;
int ilogb (float x);
int ilogb(long double x) ;

The function returns:

m For x not-a-number (NaN), the value of the macro FP_ ILOGBNAN
m For x equal to zero, the value of the macro FP_ILOGBO
m For x equal to positive or negative infinity, the value of the macro INT MAX

Otherwise, it returns (int) logb (x).

11.28.33Idexp

double ldexp (double x, int ex);
float ldexp(float x, int ex);
long double ldexp (long double x, int ex);

The function returns x * 2%ex.

11.28.34lgamma

double lgamma (double x) ;
float lgamma (float x);
long double lgamma (long double x) ;

The function returns the natural logarithm of the absolute value of the gamma function of x.

11.28.35lIrint

long long llrint (double x) ;
long long llrint (float x);
long long llrint (long double x) ;

The function returns the nearest long long integer to x, consistent with the current rounding
mode. It raises an invalid floating point exception if the magnitude of the rounded value is too

large to represent. And it raises an inexact floating point exception if the return value does not
equal x.

80-N2040-13 Rev. D 246

Qualcomm Hexagon C Library User Guide Header files

11.28.36llround

long long llround (double x);
long long llround(float x);
long long llround(long double x);

The function returns the nearest long long integer to x, rounding halfway values away from
zero, regardless of the current rounding mode.

11.28.37log

double log(double x) ;

float log(float x);

long double log(long double x);

double Complex log(double Complex x);

float Complex log(float Complex x);

long double Complex log(long double Complex x);

The function returns the natural logarithm of x.

11.28.3810g10

double 1loglO (double x) ;
float loglo0 (float x);
long double 1logl0 (long double x);

The function returns the base-10 logarithm of x. A domain error occurs if x < 0.

11.28.391og1p

double loglp (double x) ;
float loglp (float x);
long double loglp(long double x);

The function returns the natural logarithm of 1 + x. A domain error occurs if x < -1.

11.28.40log2

double log2 (double x) ;
float log2(float x);
long double log2 (long double x);

The function returns the base-2 logarithm of x. A domain error occurs if x < 0.

80-N2040-13 Rev. D 247

Qualcomm Hexagon C Library User Guide Header files

11.28.41logb

double logb (double x) ;
float logb(float x);
long double logb (long double x);

The function determines an integer exponent ex and a fraction £rac that represent the value of
a finite x. It returns the value ex such that:

x == frac * ex”FLT RADIX
|frac| is in the interval [1, FLT RADIX)

A domain error might occur if x is zero.

11.28.42Irint

long lrint (double x) ;
long lrint(float x);
long lrint (long double x);

The function returns the nearest 1ong integer to x, consistent with the current rounding mode.
It raises an invalid floating point exception if the magnitude of the rounded value is too large
to represent. And it raises an inexact floating point exception if the return value does not equal
X.

11.28.43Iround

long lround (double x) ;
long lround(float x);
long lround(long double x) ;

The function returns the nearest 1ong integer to x, rounding halfway values away from zero,
regardless of the current rounding mode.

11.28.44modf

double modf (double x, double *pint);
float modf (float x, float *pint);
long double modf (long double x, long double *pint);

The function determines an integer i plus a fraction £rac that represent the value of x. It
returns the value frac and stores the integer i in *pint, such that:

m x==frac+i
m |frac| isin the interval [0, 1)

m Both frac and i have the same sign as x

80-N2040-13 Rev. D 248

Qualcomm Hexagon C Library User Guide

Header files

11.28.45nearbyint

double nearbyint (double x) ;
float nearbyint (float x);
long double nearbyint (long double x);

The function returns x rounded to the nearest integer, using the current rounding mode but

without raising an inexact floating point exception.

11.28.46nextafter

double nextafter (double x, double vy);
float nextafter(float x, float y);
long double nextafter (long double x, long double y);

The function returns:
m Ifx < v, the next representable value after x
m Ifx == y, vy

m Ifx > v, the next representable value before x

11.28.47nexttoward

double nexttoward(double x, long double vy);
float nexttoward(float x, long double vy);
long double nexttoward(long double x, long double y) ;

The function returns:
m ifx < y, the next representable value after x
m Ifx == vy, v

m Ifx > vy, the next representable value before x

11.28.48pow

double pow (double x, double Vy);

float pow(float x, float vy);

long double pow(long double x, long double vy);

double Complex pow(double Complex x, double Complex V) ;
float Complex pow(float Complex x, float Complex y);

long double Complex pow(long double Complex x, long double
y);

The function returns x raised to the power y, x*y.

_Complex

80-N2040-13 Rev. D

249

Qualcomm Hexagon C Library User Guide Header files

11.28.49remainder

double remainder (double x, double vy);
float remainder (float x, float vy);
long double remainder (long double x, long double Vy);

The function effectively returns remquo (x, vy, &temp), where temp is a temporary object of
type int local to the function.

11.28.50remquo

double remquo (double x, double y, int *pquo) ;
float remquo(float x, float y, int *pquo) ;
long double remquo (long double x, long double y, int *pquo) ;

The function computes the remainder rem == x - n*y, wheren == x/y rounded to the
nearest integer, or to the nearest even integer if |[n - x/y| == 1/2.If remis zero, it has the
same sign as x. A domain error occurs if y is zero.

The function stores in *pquo at least three of the low order bits of |x/y |, negated if x/y < 0.
It returns rem.

11.28.51rint

double rint (double x);
float rint (float x);
long double rint (long double x) ;

The function returns x rounded to the nearest integer, using the current rounding mode. It
might raise an inexact floating point exception if the return value does not equal x.

11.28.52round

double round(double x) ;
float round(float x);
long double round(long double x);

The function returns x rounded to the nearest integer n, or to the value with larger magnitude if
|ln - x| == 1/2.

11.28.53scalbln

double scalbln(double x, long ex);
float scalbln(float x, long ex);
long double scalbln(long double x, long ex);

The function returns x * FLT RADIXex.

80-N2040-13 Rev. D 250

Qualcomm Hexagon C Library User Guide Header files

11.28.54scalbn

double scalbn(double x, int ex);
float scalbn(float x, int ex);
long double scalbn(long double x, int ex);

The function returns x * FLT RADIXex.

11.28.55sin

double sin(double x) ;

float sin(float x);

long double sin(long double x);

double _Complex sin(double _Complex Xx) ;

float Complex sin(float Complex x) ;

long double Complex sin(long double Complex x);

The function returns the sine of x.

11.28.56sinh

double sinh (double x) ;

float sinh(float x);

long double sinh(long double x);

double _Complex sinh(double _Complex x) ;

float Complex sinh(float Complex x);

long double Complex sinh(long double Complex Xx) ;

The function returns the hyperbolic sine of x.

11.28.57sqrt

double sqgrt (double x);

float sqgrt(float x);

long double sqgrt(long double x);

double Complex sgrt (double Complex x) ;

float Complex sqgrt(float Complex x) ;

long double Complex sqgrt(long double Complex Xx);

The function returns the real square root of x,x"* (1/2).

11.28.58tan

double tan(double x) ;

float tan(float x);

long double tan(long double x);

double _Complex tan(double _Complex Xx);

float Complex tan(float Complex x);

long double Complex tan(long double Complex x);

The function returns the tangent of x.

80-N2040-13 Rev. D 251

Qualcomm Hexagon C Library User Guide Header files

11.28.59tanh

double tanh (double x) ;

float tanh(float x);

long double tanh(long double x);

double Complex tanh(double Complex x) ;

float Complex tanh(float Complex x);

long double Complex tanh(long double Complex Xx);

The function returns the hyperbolic tangent of x.

11.28.60tgamma

double tgamma (double x) ;
float tgamma (float x) ;
long double tgamma (long double x) ;

The function computes the gamma function of x. A domain error occurs if X is a negative
integer.

11.28.61trunc

double trunc(double x);
float trunc(float x);
long double trunc(long double x);

The function returns x rounded to the nearest integer n not larger in magnitude than x (toward
Zer0).

80-N2040-13 Rev. D 252

Qualcomm Hexagon C Library User Guide Header files

11.29 <time.h>

Include the standard header <t ime . h> to declare several functions that help you manipulate
times. Figure 11-6 summarizes the functions and the object types that they convert between.

— clock

difftime

mktime

asctime

gmtime ;
strftime

localtime

struct tm *

Figure 11-6 Time conversion functions

The functions share two static-duration objects that hold values computed by the
functions:

m A time string of type array of char

m A time structure of type struct tm

A call to one of these functions can alter the value that was stored earlier in a static-
duration object by another of these functions.

/* MACROS */
#define CLOCKS PER SEC <integer constant expression > 0>
#define NULL <either 0, 0L, or (void *)0> [0in C++]

/* TYPES */

typedef a-type clock t;
typedef ui-type size t;
typedef a-type time t;
struct tm;

/* FUNCTIONS */

char *asctime (const struct tm *tptr);

char *asctime r(const struct tm restrict *tm, char * restrict buf);
[POSIX]

clock t clock(void) ;

char *ctime (const time t *tod);

char *ctime r(const time t *clock, char *buf); [POSIX]

double difftime(time t t1, time t tO);

struct tm *gmtime (const time t *tod);

struct tm *gmtime r(const time t * restrict clock, struct tm *
restrict result); [POSIX]

struct tm *localtime (const time t *tod) ;

struct tm *localtime r(const time t * restrict clock, struct tm *
restrict result); [POSIX]

time t mktime (struct tm *tptr);

size t strftime(char *restrict s, size t n, const char *restrict
format, const struct tm *restrict tptr);

80-N2040-13 Rev. D 253

Qualcomm Hexagon C Library User Guide Header files

char * strptime(const char * restrict buf, const char * restrict
format, struct tm * restrict tm); [POSIX]
time t time(time_t *tod);

11.29.1 asctime

char *asctime (const struct tm *tptr);

The function stores in the static-duration time string a 26-character English-language
representation of the time encoded in *tptr. It returns the address of the static-duration
time string. The text representation takes the form:

Sun Dec2 06:55:15 1979\n\0

11.29.2 asctime_r

char *asctime r(const struct tm restrict *tm, char * restrict buf);

[POSIX]

The function provides the same functionality as asctime, differing in that the caller must
supply a buffer area buf with a size of at least 26 bytes, in which the result is stored.

11.29.3 clock

clock t clock(void) ;

The function returns the number of clock ticks of elapsed processor time, counting from a time
related to program startup, or it returns -1 if the target environment cannot measure elapsed
processor time.

11.29.4 CLOCKS_PER_SEC

#define CLOCKS PER SEC <integer constant expression > 0>

The macro yields the number of clock ticks, returned by clock, in one second.

11.29.5 clock _t

typedef a-type clock t;

The type is the arithmetic type a-type of an object that you declare to hold the value returned
by clock, representing elapsed processor time.

80-N2040-13 Rev. D 254

Qualcomm Hexagon C Library User Guide Header files

11.29.6 ctime

char *ctime(const time t *tod);

The function converts the calendar time in *tod to a text representation of the local time in the
static-duration time string. It returns the address of that string. It is equivalent to
asctime (localtime (tod)).

11.29.7 ctime_r

char *ctime r(const time t *clock, char *buf); [POSIX]

The function provides the same functionality as ctime differing in that the caller must supply
a buffer area buf with a size of at least 26 bytes, in which the result is stored.

11.29.8 difftime

double difftime(time t tl, time t tO);

The function returns the difference t1 - to, in seconds, between the calendar time t 0 and the
calendar time t1.

11.29.9 gmtime

struct tm *gmtime (const time t *tod) ;

The function stores in the static-duration time structure an encoding of the calendar time
in *tod, expressed as Coordinated Universal Time, or UTC [sic]. (UTC was formerly
Greenwich Mean Time, or GMT).

It returns the address of that structure, or [added with C99] a NULL pointer if it cannot
generate the encoding.

11.29.10gmtime_r

struct tm *gmtime r(const time t * restrict clock, struct tm *
restrict result); [POSIX]

The function provide the same functionality as gmt ime, differing in that the caller must supply
a buffer area result in which the result is stored.

11.29.11localtime

struct tm *localtime (const time t *tod) ;

The function stores in the static-duration time structure an encoding of the calendar time
in *tod, expressed as local time. It returns the address of that structure, or [added with C99] a
NULL pointer if it cannot generate the encoding.

80-N2040-13 Rev. D 255

Qualcomm Hexagon C Library User Guide Header files

11.29.12localtime_r

struct tm *localtime r(const time t * restrict clock, struct tm *
restrict result); [POSIX]

The function provides the same functionality as localtime, differing in that the caller must
supply a buffer area result in which the result is stored. Also, localtime r does not imply

initialization of the local time conversion information; the application may need to do so by
calling tzset.

11.29.13mktime

time_ t mktime (struct tm *tptr);

The function alters the values stored in *tptr to represent an equivalent encoded local time,
but with the values of all members within their normal ranges. It then determines the values

tptr->wday and tptr->yday from the values of the other members. It returns the calendar
time equivalent to the encoded time, or it returns a value of -1 if the calendar time cannot be
represented.

11.29.14NULL

#define NULL <either 0, 0L, or (void *)0> [0in C++]

The macro yields a NULL pointer constant that is usable as an address constant expression.

11.29.15size _t

typedef ui-type size t;

The type is the unsigned integer type ui-type of an object that you declare to store the result
of the sizeof operator.

80-N2040-13 Rev. D 256

Qualcomm Hexagon C Library User Guide Header files

11.29.16strftime

size t strftime(char *restrict s, size t n, const char *restrict
format, const struct tm *restrict tptr);

The function generates formatted text, under the control of the format format and the values
stored in the time structure *tptr. It stores each generated character in successive locations of
the array object of size n whose first element has the address s. The function then stores a
NULL character in the next location of the array.

It returns x, the number of characters generated, if x < n; otherwise, it returns zero and the
values stored in the array are indeterminate.

For each multibyte character other than % in the format, the function stores that multibyte
character in the array object. Each occurrence of % followed by an optional qualifier and
another character in the format is a conversion specifier. The optional qualifiers [added with
C99] are:

m E— To represent times in terms of a locale-specific era (such as 1 BC instead of 0000).

m 0 — To represent numeric values with a set of locale-specific alternate digits (such as first
instead of 1).

For each conversion specifier, the function stores a replacement character sequence.

The following table lists all conversion specifiers defined for strftime. The fields used in
*tptr follow. Example replacement character sequences in parentheses follow each
description. All examples are for the "C" locale, which ignores any optional qualifier, using
the date and time Sunday, 2 December 1979 at 06:55:15 AM EST.

For a Sunday week of the year, week 1 begins with the first Sunday on or after 1 January. For
a Monday week of the year, week 1 begins with the first Monday on or after 1 January. An
ISO 8601 week of the year is the same as a Monday week of the year, with the following
exceptions:

m If 1 January is a Tuesday, Wednesday, or Thursday, the week number is one greater.
Moreover, days back to and including the immediately preceding Monday in the preceding
year are included in week 1 of the current year.

m If 1 January is a Friday, Saturday, or Sunday, days up to but not including the immediately
following Monday in the current year are included in the last week (52 or 53) of the
preceding year.

Table 11-10 the conversion specifications marked with a + are all added with C99.

Table 1110 strftime conversion specifications

Specifier Fields Description (example)
%a tm_wday Abbreviated weekday name (Sun)
%A tm_wday Full weekday name (Sunday)
$b tm_mon Abbreviated month name (Dec)
%B tm_mon Full month name (December)
sc [all] Date and time (Sun Dec2 06:55:15 1979)

80-N2040-13 Rev. D 257

Qualcomm Hexagon C Library User Guide Header files

Table 11-10 strftime conversion specifications

Specifier Fields Description (example)
$Ec [all] + Era-specific date and time
5C tm_year + Year/100 (19)
$EC tm_mday
tm_mon
tm_year + era specific era name
%d tm_mday Day of the month (02)
%D tm_mday
tm_mon
tm_year + month/day/year from

01/01/00 (12/02/79)

Se tm_mday + Day of the month, leading space for zero (2)
sF tm_mday
tm_mon
tm_year + year-month-day (1979-12-
02)
%9 tm_wday
tm_yday
tm_year + year for ISO 8601 week,

from 00 (79)

%G tm_wday
tm_yday
tm_year + year for ISO 8601 week,

from 0000 (1979)

%h tm_mon + Same as %b (Dec)

SH tm_hour Hour of the 24-hour day, from 00 (06)
5T tm_hour Hour of the 12-hour day, from 01 (06)
%3 tm_yday Day of the year, from 001 (336)

sm tm_mon Month of the year, from 01 (12)

M tm min Minutes after the hour (55)

+ newline character \n

%p tm_hour AM/PM indicator (AM)
sr tm_sec
tm_min
tm_hour + 12-hour time, from 01:00:00
AM (06:55:15 AM)
$Er tm_sec
tm_min
tm_hour

80-N2040-13 Rev. D 258

Qualcomm Hexagon C Library User Guide

Header files

Table 11-10 strftime conversion specifications

Specifier Fields Description (example)
tm_mday
tm_mon
tm_year + era-specific date and 12-
hour time
%R tm_min
tm_hour + hour:minute, from 01:00
(06:55)
%S tm_sec Seconds after the minute (15)
st + horizontal tab character \t
T tm_sec
tm_min
tm_hour + 24-hour time, from 00:00:00
(06:55:15)
su tm_wday +1SO 8601 day of the week, to 7 for Sunday (7)
50U tm_wday
tm_yday Sunday week of the year, from
00 (48)
sV tm_wday
tm_yday
tm_year + ISO 8601 week of the year,
from 01 (48)
Sw tm_wday Day of the week, from 0 for Sunday (0)
W tm_wday
tm_yday Monday week of the year, from
00 (48)
$x [all] Date (02/12/79)
SEX [all] + Era-specific date
$X [all] Time, from 00:00:00 (06:55:15)
$EX [all] + Era-specific time
sy tm_year Year of the century, from 00 (79)
SEy tm_mday
tm_mon
tm_year + year of the era
$Y tm_year Year (1979)
$EY tm_mday
tm_mon
tm_year + era-specific era name and
year of the era

80-N2040-13 Rev. D

259

Qualcomm Hexagon C Library User Guide Header files

Table 11-10 strftime conversion specifications

Specifier Fields Description (example)
%z tm_isdst + time zone (hours
east*100 + minutes), 1if any
(-0500)

o
N

tm_isdst time zone name, if
any (EST)

o

percent character %

o
o

The current locale category Lc_TIME can affect these replacement character sequences.

11.29.17strptime

char * strptime(const char * restrict buf, const char * restrict
format, struct tm * restrict tm); [POSIX]

The function converts the character string pointed to by buf to values that are stored in the tm
structure pointed to by tm, using the format specified by format.

The format string consists of zero or more conversion specifications, whitespace characters as
defined by isspace, and ordinary characters. All ordinary characters in format are compared
directly against the corresponding characters in buf; comparisons that fail will cause
strptime to fail. Whitespace characters in format match any number of whitespace characters
in buf, including none.

A conversion specification consists of a percent sign (%) followed by one or two conversion
characters which specify the replacement required. There must be white-space or other non-
alphanumeric characters between any two conversion specifications.

Conversion of alphanumeric strings (such as month and weekday names) is done without
regard to case. Conversion specifications which cannot be matched will cause strptime to
fail.

The Lc_TIME category defines the locale values for the conversion specifications. Table 11-11
lists the supported conversion specifications.

Table 11-11 strptime conversion specifications

Spec Description

o
@

The day of week, using the locale's weekday names; either the abbreviated or full name
can be specified.

The same as %a.

o
i

o
o

The month, using the locale's month names; either the abbreviated or full name can be
specified.

o
[vs]

The same as %b.

o
Q

The date and time, using the locale's date and time format.

o
(@]

The century number [0,99]; leading zeros are permitted but not required. This conversion
should be used in conjunction with the %y conversion.

o
ol

The day of month [1,31]; leading zeros are permitted but not required.

80-N2040-13 Rev. D 260

Qualcomm Hexagon C Library User Guide Header files

Table 11-11 strptime conversion specifications

Spec

Description

The date as %m/%d/%y.

The same as %d.

The date as %Y-%m-%d (the ISO 8601 date format).

The year corresponding to the ISO week number, without the century. (A NetBSD
extension.)

The year corresponding to the ISO week number, with the century. (A NetBSD extension.)

The same as %b.

The hour (24-hour clock) [0,23]; leading zeros are permitted but not required.

The hour (12-hour clock) [1,12]; leading zeros are permitted but not required.

The day number of the year [1,366]; leading zeros are permitted but not required.

The same as %H.

The same as %l.

The month number [1,12]; leading zeros are permitted but not required.

The minute [0,59]; leading zeros are permitted but not required.

Any white-space, including none.

The locale's equivalent of a.m. or p.m.

The time (12-hour clock) with %p, using the locale's time format.

The time as %H:%M.

The seconds [0,61]; leading zeros are permitted but not required.

The number of seconds since the Epoch, UTC (see mktime). (A NetBSD extension.)

Any white-space, including none.

The time as %H:%M:%S.

The day of the week as a decimal number, where Monday = 1. (A NetBSD extension.)

The week number of the year (Sunday as the first day of the week) as a decimal number
[0,53]; leading zeros are permitted but not required. All days in a year preceding the first
Sunday are considered to be in week 0.

sV

The ISO 8601:1988 week number as a decimal number. If the week (starting on Monday)
that contains January 1 has more than three days in the new year, it is considered the first
week of the year. If it has fewer than four days in the new year, it is considered the last
week of the previous year. Weeks are numbered from 1 to 53. (A NetBSD extension.)

o
sW

The weekday as a decimal number [0,6], with O representing Sunday; leading zeros are
permitted but not required.

The week number of the year (Monday as the first day of the week) as a decimal number
[0,53]; leading zeros are permitted but not required. All days in a year preceding the first
Monday are considered to be in week 0.

The date, using the locale's date format.

The time, using the locale's time format.

The year within the 20th century [69,99] or the 21st century [0,68]; leading zeros are
permitted but not required. If specified in conjunction with %C, specifies the year [0,99]
within that century.

80-N2040-13 Rev. D

261

Qualcomm Hexagon C Library User Guide Header files

Table 11-11 strptime conversion specifications

Spec

Description

sY

The year, including the century (i.e., 1996).

%z

An ISO 8601 or RFC-2822 timezone specification. This is one of the following:

m The offset from Coordinated Universal Time (UTC) specified as: [+-]hhmm, [+-
Jhh:mm’, or [+-]hh

m UTC specified as: GMT' (Greenwich Mean Time), UT (Universal Time), or Z (Zulu
Time)

m Athree-character US timezone specified as: EDT, EST, CDT, CST, MDT, MST, PDT, or
PST, where
o The first letter stands for Eastern (E), Central (C), Mountain (M) or Pacific (P)
o The second letter stands for Daylight (D or summer) time or Standard (S) time

m A single letter military timezone specified as: A through | and K through Y. (A NetBSD
extension.)

Time zone name or no characters when time zone information is unavailable. (A NetBSD
extension.)

NOTE: The %Z format specifier only accepts timezone abbreviations of the local
timezone, or the value GMT. This limitation is caused by the ambiguity of
overloaded timezone abbreviations, for example EST is both Eastern Standard
Time and Eastern Australia Summer Time.

Matches a literal %. No argument is converted.

Modified conversion specifications

For compatibility, certain conversion specifications can be modified by the & and o modifier
characters to indicate that an alternative format or specification should be used rather than the
one normally used by the unmodified conversion specification. Because there are currently
neither alternative formats nor specifications supported by the system, the behavior will be as
if the unmodified conversion specification were used.

Case is ignored when matching string items in buf, such as month and weekday names.

If successful, the strptime function returns a pointer to the character following the last
character parsed. Otherwise, a NULL pointer is returned.

80-N2040-13 Rev. D

262

Qualcomm Hexagon C Library User Guide

Header files

11.29.18time

time t time(time_t *tod);

If tod is not a NULL pointer, the function stores the current calendar time in *tod. The
function returns the current calendar time, if the target environment can determine it;

otherwise, it returns -1.

11.29.19time_t

typedef a-type time t;

The type is the arithmetic type a-type of an object that you declare to hold the value returned
by time. The value represents calendar time.

11.29.20tm

struct tm {
int tm sec;
int tm min;
int tm hour;
int tm mday;
int tm mon;
int tm year;
int tm wday;
int tm yday;
int tm isdst;

Vi

seconds after the minute (from 0)
minutes after the hour (from 0)
hour of the day (from 0)

day of the month (from 1)

month of the year (from 0)

years since 1900 (from 0)

days since Sunday (from 0)

day of the year (from 0)

Daylight Saving Time flag

The structure contains members that describe various properties of the calendar time. The
members shown above can occur in any order, interspersed with additional members. The
comment following each member briefly describes its meaning.

The member tm_isdst contains:

m A positive value if Daylight Saving Time is in effect

m Zero if Daylight Saving Time is not in effect

m A negative value if the status of Daylight Saving Time is not known (so the target
environment should attempt to determine its status)

80-N2040-13 Rev. D

263

Qualcomm Hexagon C Library User Guide Header files

11.30 <uchar.h>

[Added with TR19769]

Include the added header <uchar.h> so that you can work with either 16-bit or 32-bit
character encodings regardless of the size of wchar_t.

Use of this header does not require the additions to the C language mandated by TR19769,
which include additional literals of the form u'x', u"abc", U'x', and U"abc".

/* MACROS */

#define NULL <either 0, 0L, or (void *)0> [0in C+t]
#define STDC UTF 16 _ unspecified

#define STDC UTF 32 unspecified

/* TYPES */

typedef i-type charlé t;
typedef i-type char32 t;
typedef o-type mbstate t;
typedef ui-type size t;

/* FUNCTIONS */

size_t clértomb(char *restrict s, charlé_t wc,
mbstate t *restrict ps);

size t c32rtomb(char *restrict s, charlé t wc,
mbstate t *restrict ps);

size t mbrtoclé (charlé t *restrict pwc, const char *restrict s,
size t n, mbstate t *restrict ps);

size t mbrtoc32(charlé t *restrict pwc, const char *restrict s,
size t n, mbstate t *restrict ps);

cléertomb

size_t clértomb(char *restrict s, wchar_t wc,
mbstate t *restrict ps);

The function determines the number of bytes needed to represent the wide character wc as a
multibyte character, if possible. (Not all values representable as type wchar t are necessarily
valid wide-character codes.) The conversion state for the multibyte string is assumed to be
*ps.

If s is not a NULL pointer and wc is a valid wide-character code, the function determines x,
the number of bytes needed to represent wc as a multibyte character, and stores the converted
bytes in the array of char beginning at s. (x cannot be greater than MB_CUR_MAX, defined in
<stdlib.h>.) If we is a NULL wide character, the function stores any shift sequence needed
to restore the initial shift state. followed by a NULL byte. The resulting conversion state is the
initial conversion state.

If s is a NULL pointer, the function effectively returns c16rtomb (buf, L'\0', ps), where
buf is a buffer internal to the function. (The function thus returns the number of bytes needed
to restore the initial conversion state and to terminate the multibyte string pending from a
previous call to c16rtomb or wesrtombs for the same string and conversion state.)

80-N2040-13 Rev. D 264

Qualcomm Hexagon C Library User Guide Header files

11.30.1

11.30.2

The function returns:

m (size t)-1-Ifwc isan invalid wide-character code, in which case the function stores
the value EILSEQ in errno (both macros defined in <errno.h>) and leaves the resulting
conversion state undefined

m x— The number of bytes needed to complete the next multibyte character, in which case
the resulting conversion state indicates that x bytes have been generated

c32rtomb

size t c32rtomb(char *restrict s, wchar t wc,
mbstate t *restrict ps);

The function determines the number of bytes needed to represent the wide character wc as a
multibyte character, if possible. (Not all values representable as type wchar_t are necessarily
valid wide-character codes.) The conversion state for the multibyte string is assumed to

be *ps.

If s is not a NULL pointer and wc is a valid wide-character code, the function determines x,
the number of bytes needed to represent wc as a multibyte character, and stores the converted
bytes in the array of char beginning at s. (x cannot be greater than MB_CUR MAX, defined in
<stdlib.hs.) If we is a NULL wide character, the function stores any shift sequence needed
to restore the initial shift state followed by a NULL byte. The resulting conversion state is the
initial conversion state.

If s is a NULL pointer, the function effectively returns c32rtomb (buf, L'\0', ps), where
buf is a buffer internal to the function. (The function thus returns the number of bytes needed
to restore the initial conversion state and to terminate the multibyte string pending from a
previous call to c32rtomb or wesrtombs for the same string and conversion state.)

The function returns:

m (size t)-1-Ifwcisan invalid wide-character code, in which case the function stores
the value EILSEQ in errno (both macros defined in <errno.h>) and leaves the resulting
conversion state undefined

m x — The number of bytes needed to complete the next multibyte character, in which case
the resulting conversion state indicates that x bytes have been generated

char16_t

typedef i-type charlé t;

The type is the integer type i-type of a 16-bit character constant, such as u'x'. Declare an
object of type chari6 t to hold a 16-bit wide character.

80-N2040-13 Rev. D 265

Qualcomm Hexagon C Library User Guide Header files

11.30.3

11.30.4

char32_t

typedef i-type char32 t;

The type is the integer type i-type of a 32-bit character constant, such as u'x'. Declare an
object of type char32_t to hold a 32-bit wide character.

mbrtoc16

size t mbrtoclé (charlé t *restrict pwc, const char *restrict s,
size t n, mbstate t *restrict ps);

The function determines the number of bytes in a multibyte string that completes the next
multibyte character, if possible. The conversion state for the multibyte string is assumed to be

*ps.

If s is not a NULL pointer, the function determines x, the number of bytes in the multibyte
string s that complete or contribute to the next multibyte character. (x cannot be greater than
n.) Otherwise, the function effectively returns mbrtoci6 (0, "", 1, ps), ignoring pwc and
n. (The function thus returns zero only if the conversion state indicates that no incomplete
multibyte character is pending from a previous call to mbrlen, mbrtoc16, or mbsrtowcs for
the same string and conversion state.)

If pwc is not a NULL pointer, the function converts a completed multibyte character to its
corresponding wide-character value and stores that value in *pwc.

The function returns:

m (size_ t)-3 —Ifno additional bytes are needed to complete the next multibyte character,
in which case the resulting conversion state indicates that no additional bytes have been
converted and the next multibyte character has been produced

m (size t)-2—If] after converting all n characters, the resulting conversion state indicates
an incomplete multibyte character

m (size_ t)-1— If the function detects an encoding error before completing the next
multibyte character, in which case the function stores the value EILSEQ in errno (both
macros defined in <errno.hs>) and leaves the resulting conversion state undefined

m Zero — If the next completed character is a NULL character, in which case the resulting
conversion state is the initial conversion state

m x— The number of bytes needed to complete the next multibyte character, in which case
the resulting conversion state indicates that x bytes have been converted and the next
multibyte character has been produced

80-N2040-13 Rev. D 266

Qualcomm Hexagon C Library User Guide Header files

11.30.5 mbrtoc32

size t mbrtoc32(char32 t *restrict pwc, const char *restrict s,
size t n, mbstate t *restrict ps);

The function determines the number of bytes in a multibyte string that completes the next
multibyte character, if possible. The conversion state for the multibyte string is assumed to be

*ps.

If s is not a NULL pointer, the function determines x, the number of bytes in the multibyte
string s that complete or contribute to the next multibyte character. (x cannot be greater than
n.) Otherwise, the function effectively returns mbrtoc32 (0, "", 1, ps), ignoring pwc and
n. (The function thus returns zero only if the conversion state indicates that no incomplete
multibyte character is pending from a previous call to mbrlen, mbrtoc32, or mbsrtowcs for
the same string and conversion state.)

If pwc is not a NULL pointer, the function converts a completed multibyte character to its
corresponding wide-character value and stores that value in *pwc.

The function returns:

m (size_ t) -3 —Ifno additional bytes are needed to complete the next multibyte character,
in which case the resulting conversion state indicates that no additional bytes have been
converted and the next multibyte character has been produced

m (size t)-2—If] after converting all n characters, the resulting conversion state indicates
an incomplete multibyte character

m (size_ t)-1— If the function detects an encoding error before completing the next
multibyte character, in which case the function stores the value EILSEQ in errno (both
macros defined in <errno.hs>) and leaves the resulting conversion state undefined

m Zero — If the next completed character is a NULL character, in which case the resulting
conversion state is the initial conversion state

m x— The number of bytes needed to complete the next multibyte character, in which case
the resulting conversion state indicates that x bytes have been converted and the next
multibyte character has been produced

11.30.6 mbstate_t

typedef o-type mbstate t;

The type is an object type o-type that can represent a conversion state for any of the functions
clértomb, c32rtomb, mbrtoclé, or mbrtoc32. A definition of the following form ensures
that mbst represents the initial conversion state:

mbstate t mbst = {0};

However, other values stored in an object of type mbstate t can also represent this state. To
test safely for this state, use the function mbsinit, declared in <wchar.hs.

80-N2040-13 Rev. D 267

Qualcomm Hexagon C Library User Guide Header files

11.30.7 NULL

#define NULL <either 0, 0L, or (void *)0> [0in C+t]

The macro yields a NULL pointer constant that is usable as an address constant expression.

11.30.8 size_t

typedef ui-type size t;

The type is the unsigned integer type ui-type of an object that you declare to store the result
of the sizeof operator.

11.30.9 _ STDC_UTF_16__

#define STDC UTF 16 _ unspecified

The header defines the macro only if the functions c16rtomb and mbrtoclé treat elements of
type charilé_t as characters with the UTF-16 encoding.

11.30.10__STDC_UTF_32__

#define _ STDC UTF_32_ unspecified

The header defines the macro only if the functions c32rtomb and mbrtoc32 treat elements of
type char32_t as characters with the UTF-32 encoding.

80-N2040-13 Rev. D 268

Qualcomm Hexagon C Library User Guide Header files

11.31 <unistd.h>

The <unistd.hs> header defines the symbolic constants and structures which are not already
defined or declared in some other header.

int access(const char *path, int mode); [POSIX]

unsigned int alarm(unsigned int seconds); [POSIX]

char *getcwd(char *buf, size t size); [POSIX]

pid t getpid(void); [POSIX]

char *getwd(char *path name); [POSIX]

int isatty(int £d); [POSIX]

void swab (const void *src, void *dest, size t len); [POSIX]
long int sysconf (int name); [POSIX]

int unlink (const char *path); [POSIX]

extern char *optarg;

extern int optind;

extern int optopt;

extern int opterr;

extern int optreset;

int getopt (int argc, char * const argv[], const char *optstring);
[POSIX]

access

int access(const char *path, int mode); [POSIX]

The access function checks the accessibility of the file named by path for the access
permissions indicated by mode. The value of mode is the bitwise inclusive OR of the access
permissions to be checked (R_OK for read permission, W_OK for write permission and X 0K for
execute/search permission) or the existence test, F_OK. All components of the pathname path
are checked for access permissions (including F_0x).

When Hexagon standalone programs execute on a simulator that is running on the Windows
Operating system, the check for X 0Ok is not supported due to restrictions in the Windows
platform.

The real user ID is used in place of the effective user ID and the real group access list
(including the real group ID) are used in place of the effective ID for verifying permission.

If a process has super-user privileges and indicates success for R_OK or W_OK, the file may not
actually have read or write permission bits set. If a process has super-user privileges and
indicates success for X_OK, at least one of the user, group, or other execute bits is set.
(However, the file may still not be executable.)

If path cannot be found or if an access modes would not be granted, a -1 value is returned;
otherwise a 0 value is returned.

80-N2040-13 Rev. D 269

Qualcomm Hexagon C Library User Guide Header files

11.31.1 alarm

unsigned int alarm(unsigned int seconds); [POSIX]

The alarm function sets a timer to deliver the signal SIGALRM to the calling process seconds
after the call to alarm. If an alarm has already been set with alarm but has not been delivered,
another call to alarm will supersede the prior call. The request alarm (0) voids the current
alarm and the signal s1GALRM will not be delivered. The maximum number of seconds
allowed is 2,147,483,647.

The return value of alarm is the amount of time left on the timer from a previous call to alarm.
If no alarm is currently set, the return value is 0. If there is an error setting the timer, alarm
returns ((unsigned int) -1).

11.31.2 getcwd

char *getcwd(char *buf, size t size); [POSIX]

The function copies the absolute pathname of the current working directory into the memory
referenced by buf and returns a pointer to buf. The size argument is the size, in bytes, of the
array referenced by buf.

If buf is NULL, space is allocated as necessary to store the pathname. This space can later be
freed with free.

Upon successful completion, a pointer to the pathname is returned. Otherwise a NULL pointer
is returned and the global variable errno is set to indicate the error. In addition, getwd copies
the error message associated with errno into the memory referenced by buf.

11.31.3 getopt

extern char *optarg;
extern int optind;
extern int optopt;
extern int opterr;
extern int optreset;

int getopt (int argc, char * const argv[], const char *optstring);

[POSIX]

The function incrementally parses a command line argument list argv and returns the next
known option character. An option character is known if it has been specified in the string of
accepted option characters, optstring.

The option string opt string may contain the following elements: individual characters, and
characters followed by a colon to indicate an option argument is to follow. For example, an
option string “x” recognizes an option “-x”, and an option string “x:” recognizes an option
and argument “-x argument”. It does not matter to getopt if a following argument has
leading whitespace.

80-N2040-13 Rev. D 270

Qualcomm Hexagon C Library User Guide Header files

On return from getopt, optarg points to an option argument, if it is anticipated, and the
variable optind contains the index to the next argv argument for a subsequent call to getopt.
The variable optopt saves the last known option character returned

The variables opterr and opt ind are both initialized to 1. The optind variable can be set to
another value before a set of calls to getopt in order to skip over more or less argv entries.

To use getopt to evaluate multiple sets of arguments, or to evaluate a single set of arguments
multiple times, the variable optreset must be set to 1 before the second and each additional
set of calls to getopt, and the variable opt ind must be reinitialized.

The getopt function returns -1 when the argument list is exhausted. The interpretation of
options in the argument list can be canceled by the option - - (double dash) which causes
getopt to signal the end of argument processing and return -1. When all options have been
processed (up to the first non-option argument), getopt returns -1.

The getopt function returns the next known option character in optstring. If getopt
encounters a character not found in optstring or if it detects a missing option argument, it

returns "2 " (question mark). If optstring has a leading " : . a missing option argument
causes ": " to be returned instead of "2 . In either case, the variable optopt is set to the

character that caused the error. The getopt function returns -1 when the argument list is
exhausted.

For example:

extern char *optarg;
extern int optind;
int bflag, ch, fd;

bflag = 0;

while ((ch = getopt(argc, argv, "bf:")) != -1) {
switch (ch) {
case 'b':

bflag = 1;

break;
case 'f':

if ((f£4 = open(optarg, O RDONLY, 0)) < 0) f{
(void) fprintf (stderr,
"myname: %s: %$s\n", optarg, strerror (errno)) ;

exit (1) ;
}

break;
case '?':
default:

usage () ;
}

}

argc -= optind;

argv += optind;

If the getopt function encounters a character not found in the string optstring or detects a
missing option argument it writes an error message to stderr and returns "?". Setting
opterr to a zero disables these error messages. If optstring has a leading " : ", a missing
option argument causes a " : " to be returned in addition to suppressing any error messages.

80-N2040-13 Rev. D 271

Qualcomm Hexagon C Library User Guide Header files

Option arguments are allowed to begin with " - ; this is reasonable but reduces the amount of
error checking possible.

Bugs

The getopt function was once specified to return EOF instead of -1. This was changed by
IEEE Std. 1003.2-1992 (“POSIX.2”) to decouple getopt from <stdio.hs>.

A single dash (*-") can be specified as a character in optstring, however it should never
have an argument associated with it. This allows getopt to be used with programs that expect
»-» as an option flag.

This practice is wrong, and should not be used in any current development. It is provided for
backwards compatibility only. Care should be taken not to use “-~ as the first character in
optstring to avoid a semantic conflict with GNU getopt, which assigns different meaning to
an optstring that begins with a »-~. By default, a single dash causes getopt to return -1.

It is also possible to handle digits as option letters. This allows getopt to be used with
programs that expect a number (*-3") as an option. This practice is wrong, and should not be
used in any current development. It is provided for backward compatibility only. The
following code fragment works in most cases.

int ch;
long length;
char *p;
while ((ch = getopt(argc, argv, "0123456789")) != -1) {
switch (ch) {
case '0': case 'l': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
p = argv[optind - 1];
if (p[0] == '-' && p[l] == ch && !p[2])
length = ch - '0';
else
length = strtol (argv[optind] + 1, NULL, 10);
break;
}
}

11.31.4 getpid
pid t getpid(void); [POSIX]

The function returns the process ID of the calling process. The ID is guaranteed to be unique
and is useful for constructing temporary file names.

When programs are compiled in standalone mode there is no job control. When the getpid
routine is called the return value will be the thread number the program is executing on.

80-N2040-13 Rev. D 272

Qualcomm Hexagon C Library User Guide Header files

11.31.5

11.31.6

11.31.7

11.31.8

getwd
char *getwd(char *path name); [POSIX]

The function is a compatibility routine that calls getcwd with its buf argument and a size of
MAXPATHLEN (as defined in the include file <sys/param.hs>). Obviously, buf should be at
least MAXPATHLEN bytes in length.

These routines have traditionally been used by programs to save the name of a working
directory for the purpose of returning to it. A much faster and less error-prone method of
accomplishing this is to open the current directory (.) and use the £chdir function to return.

Upon successful completion, a pointer to the pathname is returned. Otherwise a NULL pointer
is returned and the global variable errno is set to indicate the error. In addition, getwd copies
the error message associated with errno into the memory referenced by buf.

Because getwd does not know the length of the supplied buffer, it is possible for a long (but
valid) path to overflow the buffer and provide a means for an attacker to exploit the caller.
getcwd should be used in place of getwd (the latter is only provided for compatibility

purposes).

isatty
int isatty(int £d); [POSIX]
The function determines if the file descriptor £d refers to a valid terminal type device.

The function returns 1 if £d is associated with a terminal device; otherwise it returns 0 and
errno is set to indicate the error.

swab
void swab (const void *src, void *dest, size t len); [POSIX]

The function copies len bytes from the location referenced by src to the location referenced
by dest, swapping adjacent bytes. The argument 1en must be even number.

sysconf
long int sysconf (int name); [POSIX]

The function provides a method for applications to determine the current value of a
configurable system limit or option variable. The name argument specifies the system variable
to be queried. Symbolic constants for each name value are found in the include file
<unistd.hs>.

80-N2040-13 Rev. D 273

Qualcomm Hexagon C Library User Guide

Header files

Table 11-12 lists the sysconf values.

Table 1112 sysconf values

Value

Description

_SC_ARG MAX

The maximum bytes of argument to execve(2).

_SC_ATEXIT MAX

The maximum number of functions that can be registered with
atexit(3).

_SC_BARRIERS

The version of IEEE Std. 1003.1 (“POSIX.1”) and its Barriers option to
which the system attempts to conform, otherwise -1.

_SC_CLOCK_SELECTION

Return the POSIX version the implementation of the Clock Selection
Option on this system conforms to, or -1 if unavailable.

_SC_CHILD MAX

The maximum number of simultaneous processes per user ID.

_SC_CLK TCK

The number of clock ticks per second.

_SC_FSYNC

Return 1 if the File Synchronization Option is available on this
system, otherwise -1.

_SC_HOST_NAME_MAX

The maximum size of a hostname, including NULL.

_SC_IOV_MAX

The maximum number of iovec structures that a process has
available for use with preadv(2), pwritev(2), readv(2), recvmsg(2),
sendmsg(2) or writev(2).

_SC_JOB_CONTROL

Return 1 if job control is available on this system, otherwise -1.

_SC_LOGIN NAME_ MAX

Returns the size of the storage required for a login name, in bytes,
including the terminating NUL.

_SC_MAPPED FILES

Return 1 if the Memory Mapped Files Option is available on this
system, otherwise -1.

_SC_MEMLOCK

Return 1 if the Process Memory Locking Option is available on this
system, otherwise -1.

_SC_MEMLOCK_RANGE

Return 1 if the Range Memory Locking Option is available on this
system, otherwise -1.

_SC_MEMORY_ PROTECTION

Return 1 if the Memory Protection Option is available on this system,
otherwise -1.

_SC_MONOTONIC CLOCK

Return the POSIX version the implementation of the Monotonic Clock
Option on this system conforms to, or -1 if unavailable.

_SC_NGROUPS_MAX

The maximum number of supplemental groups.

_SC_OPEN_MAX

The maximum number of open files per process.

_SC_PAGESIZE

The size of a system page in bytes.

_SC_PASS MAX

The maximum length of the password, not counting NULL.

_SC_READER WRITER LOCKS

The version of IEEE Std. 1003.1 (“POSIX.1”) and its Read-Write
Locks option to which the system attempts to conform, otherwise -1.

_SC_REGEXP

Return 1 if POSIX regular expressions are available on this system,
otherwise -1.

_SC_SEMAPHORES

The version of IEEE Std. 1003.1 (“POSIX.1”) and its Semaphores
option to which the system attempts to conform, otherwise -1.
Availability of the Semaphores option depends on the
P1003_1B_SEMAPHORE kernel option.

_SC_SHELL

Return 1 if POSIX shell is available on this system, otherwise -1.

80-N2040-13 Rev. D

274

Qualcomm Hexagon C Library User Guide

Header files

Table 11-12 sysconf values

Value

Description

_SC_SPIN LOCKS

The version of IEEE Std. 1003.1 (“POSIX.1”) and its Spin Locks
option to which the system attempts to conform, otherwise -1.

_SC_STREAM MAX

The minimum maximum number of streams that a process may have
open at any one time.

_SC_SYMLOOP MAX

The maximum number of symbolic links that can be expanded in a
path name.

_SC_SYNCHRONIZED IO

Return 1 if the Synchronized 1/O Option is available on this system,
otherwise -1.

_SC_THREADS The version of IEEE Std. 1003.1 (“POSIX.1”) and its Threads option
to which the system attempts to conform, otherwise -1.
_SC_TIMERS The version of IEEE Std. 1003.1 (“POSIX.1”) and its Timers option to

which the system attempts to conform, otherwise -1.

_SC_TZNAME MAX

The minimum maximum number of types supported for the name of a
timezone.

_SC_SAVED_IDS

Returns 1 if saved set-group and saved set-user ID is available,
otherwise -1.

_SC_VERSION

The version of ISO/IEC 9945 (POSIX 1003.1) with which the system
attempts to comply.

_SC_XOPEN_SHM

Return 1 if the X/Open Portability Guide Issue 4, Version 2
(“XPG4.2”) Shared Memory option is available on this system,
otherwise -1. Availability of the Shared Memory option depends on
the SYSVSHM kernel option.

_SC_BC_BASE MAX

The maximum ibase/obase values in the bc(1) utility.

_SC_BC_DIM MAX

The maximum array size in the bc(1) utility.

_SC_BC_SCALE_MAX

The maximum scale value in the bc(1) utility.

_SC_BC_STRING MAX

The maximum string length in the bc(1) utility.

_SC_COLL_WEIGHTS MAX

The maximum number of weights that can be assigned to any entry of
the LC_COLLATE order keyword in the locale definition file.

_SC_EXPR_NEST MAX

The maximum number of expressions that can be nested within
parenthesis by the expr(1) utility.

_SC_LINE MAX

The maximum length in bytes of a text-processing utility's input line.

_SC_RE_DUP_MAX

The maximum number of repeated occurrences of a regular
expression permitted when using interval notation.

_SC_2 VERSION

The version of POSIX 1003.2 with which the system attempts to
comply.

_SC_2 C BIND

Return 1 if the system's C-language development facilities sup- port
the C-Language Bindings Option, otherwise -1.

_SC 2 C DEV

Return 1 if the system supports the C-Language Development
Utilities Option, otherwise -1.

_SC_2 CHAR TERM

Return 1 if the system supports at least one terminal type capable of
all operations described in POSIX 1003.2, otherwise -1.

_SC_2 FORT DEV

Return 1 if the system supports the FORTRAN Development Utilities
Option, otherwise -1.

80-N2040-13 Rev. D

275

Qualcomm Hexagon C Library User Guide Header files

11.31.9

Table 11-12 sysconf values

Value Description

_SC_2 FORT RUN Return 1 if the system supports the FORTRAN Runtime Utilities
Option, otherwise -1.

_SC_2 LOCALEDEF Return 1 if the system supports the creation of locales, other- wise -1.

_SC_2 SW_DEV Return 1 if the system supports the Software Development Utilities
Option, otherwise -1.

_SC_2 UPE Return 1 if the system supports the User Portability Utilities Option,
otherwise -1.

_SC_GETGR_R_SIZE_ MAX The minimum size of the buffer passed to getgrgid_r(3) and
getgrnam_r(3).

_SC_GETPW R _SIZE MAX The minimum size of the buffer passed to getpwnam_r(3) and
getpwuid_r(3).

_SC_NPROCESSORS_CONF The number of processors configured.

_SC_NPROCESSORS_ONLN The number of processors online (capable of running processes).

If the call to sysconf is not successful, -1 is returned and errno is set appropriately.
Otherwise, if the variable is associated with functionality that is not supported, -1 is returned
and errno is not modified. Otherwise, the current variable value is returned.

unlink
int unlink (const char #*path); [POSIX]

The function removes a link to a file. If path names a symbolic link, unlink removes the
symbolic link and does not affect any file or directory named by the contents of the symbolic
link. Otherwise, unlink removes the link named by path and decrements the link count of the
file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by
the file will be freed and the file is no longer accessible. If one or more processes have the file
open when the last link is removed, the link is removed before unlink returns, but the removal
of the file contents is postponed until all references to the file are closed.

The path argument must not name a directory unless the process has appropriate privileges
and the implementation supports using unlink on directories.

Upon successful completion, unlink marks for update the st ctime and st _mtime fields of
the parent directory. If the file’s link count is not 0, the st _ctime field of the file is marked for
update. Upon successful completion, 0 is returned. Otherwise, -1 is returned, errno is set to
indicate the error, and the file is not unlinked.

80-N2040-13 Rev. D 276

Qualcomm Hexagon C Library User Guide Header files

11.32 <wchar.h>

[Added with Amendment 1]

Include the standard header <wchar.h> so that you can perform input and output operations
on wide streams or manipulate wide strings.

/* MACROS */

#define NULL <either 0, 0L, or (void *)0> [0in C+t]
#define WCHAR MAX <#if expression >= 127>

#define WCHAR MIN <#if expression <= 0>

#define WEOF <wint t constant expression>

/* TYPES */

typedef o-type mbstate t;

typedef ui-type size t;

typedef i-type wchar t; [Keywordin C++]
typedef i type wint t; struct tm;

/* FUNCTIONS */

wint t fgetwc (FILE *stream) ;

wchar t *fgetws(wchar t *restrict s, int n, FILE *restrict stream);
wint t fputwc(wchar t c, FILE *stream);

int fputws (const wchar t *restrict s, FILE *restrict stream);
int fwide (FILE *stream, int mode) ;

wint t getwc (FILE *stream) ;

wint t getwchar (void) ;

wint t putwc(wchar t c, FILE *stream);

wint t putwchar (wchar t c);

wint t ungetwc(wint t ¢, FILE *stream);

int fwscanf (FILE *restrict stream, const wchar t *restrict format,
cal) g

int swscanf (const wchar t *restrict s, const wchar t *restrict format,
LoL)

int wscanf (const wchar t *restrict format, ...);

int fwprintf (FILE *restrict stream, const wchar t *restrict format,
N I

int swprintf (wchar t *restrict s, size t n, const wchar t *restrict
format, ...);

int wprintf (const wchar t *restrict format, ...);

int vfwscanf (FILE *restrict stream, const wchar t *restrict format,
va_list arg); [Added with C99]

int vswscanf (const wchar_t *restrict s, const wchar t *restrict
format, va_list arg); [Added with C99]

int vwscanf (const wchar t *restrict format, va_ list arg); [Added with
C99]

int vfwprintf (FILE *restrict stream, const wchar t *restrict format,
va_list arg);

int vswprintf (wchar t *restrict s, size t n, const wchar t *restrict
format, va list arg);

int vwprintf (const wchar t *restrict format, va_ list arg);

size t wcsftime(wchar t *restrict s, size t maxsize, const wchar t
*restrict format, const struct tm *restrict timeptr);

80-N2040-13 Rev. D 277

Qualcomm Hexagon C Library User Guide Header files

wint t btowc(int c);

size t mbrlen(const char *restrict s, size t n, mbstate t *restrict
ps);

size_t mbrtowc(wchar t *restrict pwc, const char *restrict s, size t
n, mbstate t *restrict ps);

int mbsinit (const mbstate t *ps);

size t mbsrtowcs (wchar t *restrict dst, const char **restrict src,
size t len, mbstate t *restrict ps);

size t wcrtomb (char *restrict s, wchar t wc, mbstate t *restrict ps);
size t wcsrtombs(char *restrict dst, const wchar t **restrict src,
size t len, mbstate t *restrict ps);

double wcstod(const wchar t *restrict nptr, wchar t **restrict
endptr) ;

float wcstof (const wchar t *restrict nptr, wchar t **restrict endptr);
[Added with C99]

long double wcstold(const wchar t *restrict nptr, wchar t **restrict
endptr) ; [Added with C99]

long long wcstoll (const wchar t *restrict nptr, wchar t **restrict
endptr, int base); [Added with C99]

unsigned long long wcstoull (const wchar t *restrict nptr, wchar t
**restrict endptr, int base); [Added with C99]

long wcstol (const wchar t *restrict nptr, wchar t **restrict endptr,
int base) ;

unsigned long wcstoul (const wchar t *restrict nptr, wchar t **restrict
endptr, int base);

int wctob(wint t c);

wchar t *wcscat (wchar t *restrict sl, const wchar t *restrict s2);
int wcscmp (const wchar t *sl, const wchar t *s2);

int wcscoll (const wchar t *sl, const wchar t *s2);

wchar t *wcscpy(wchar t *restrict sl, const wchar t *restrict s2);
size t wcscspn(const wchar t *sl, const wchar t *s2);

size_t wcslen(const wchar t *s);

wchar t *wcsncat (wchar_t *restrict sl, const wchar_ t *restrict s2,
size t n);

int wcsncmp (const wchar t *sl, const wchar t *s2, size t n);
wchar t *wcsncpy(wchar t *restrict sl, const wchar t *restrict s2,
size t n);

size t wcsspn(const wchar t *sl, const wchar t *s2);

wchar t *wcsstr(const wchar t *sl, const wchar t *s2);

wchar t *wcstok (wchar t *restrict sl, const wchar t *restrict s2,
wchar t **restrict ptr);

size_t wcsxfrm(wchar t *restrict sl, const wchar t *restrict s2,
size t n);

int wmemcmp (const wchar t *sl, const wchar t *s2, size t n);
wchar t *wmemcpy (wchar_t *restrict sl, const wchar_ t *restrict s2,
size t n);

wchar t *wmemmove (wchar t *sl, const wchar t *s2, size t n);
wchar t *wmemset (wchar_t *s, wchar t c, size_t n);

wchar t *wcschr (const wchar t *s, wchar t c); [Notin C++]
const wchar t *wcschr(const wchar t *s, wchar t c); [C+t+only]
wchar t *wcschr (wchar_t *s, wchar t c¢); [C++only]

wchar_ t *wcspbrk (const wchar t *sl, const wchar t *s2); [Notin C++]
const wchar t *wcspbrk(const wchar t *sl, const wchar t *s2); [C++only]

80-N2040-13 Rev. D 278

Qualcomm Hexagon C Library User Guide Header files

wchar t *wcspbrk(wchar t *sl, const wchar t *s2); [C++only]

wchar t *wcsrchr (const wchar t *s, wchar t c); [Notin C++]
const wchar t *wcsrchr (const wchar t *s, wchar t c¢); [C++only]
wchar t *wcsrchr (wchar t *s, wchar t c); [C++only]

wchar t *wcsstr(const wchar t *sl, const wchar t *s2); [Notin C++]
const wchar t *wcsstr(const wchar t *sl, const wchar t *s2); [C++ only]
wchar t *wcsstr(wchar t *sl, const wchar t *s2); [C++ only]

wchar t *wmemchr (const wchar t *s, wchar t ¢, size t n); [Notin C++]
const wchar t *wmemchr (const wchar t *s, wchar t ¢, size t n); [C+t+
only]

wchar t *wmemchr (wchar t *s, wchar t ¢, size t n); [C++only]

11.32.1 btowc

wint t btowc (int c¢);

The function returns WEOF if ¢ equals EOF. Otherwise, it converts (unsigned char)casa
one-byte multibyte character beginning in the initial conversion state, as if by calling
mbrtowc. If the conversion succeeds, the function returns the wide-character conversion.
Otherwise, it returns WEOF.

11.32.2 fgetwc

wint t fgetwc (FILE *stream) ;

The function reads the next wide character c (if present) from the input stream stream,
advances the file-position indicator (if defined), and returns (wint_t) c. If the function sets
either the end-of-file indicator or the error indicator, it returns WEOF.

11.32.3 fgetws

wchar t *fgetws (wchar t *restrict s, int n, FILE *restrict stream);

The function reads wide characters from the input stream stream and stores them in
successive elements of the array beginning at s and continuing until it stores n-1 wide
characters, stores an NL wide character, or sets the end-of-file or error indicators.

If £getws stores any wide characters, it concludes by storing a NULL wide character in the
next element of the array. It returns s if it stores any wide characters and has not set the error
indicator for the stream; otherwise, it returns a NULL pointer. If it sets the error indicator, the
array contents are indeterminate.

80-N2040-13 Rev. D 279

Qualcomm Hexagon C Library User Guide Header files

11.32.4 fputwc

wint t fputwc (wchar t ¢, FILE *stream);

The function writes the wide character c to the output stream stream, advances the file-
position indicator (if defined), and returns (wint_t) c. If the function sets the error indicator
for the stream, it returns WEOF.

11.32.5 fputws

int fputws (const wchar t *restrict s, FILE *restrict stream);

The function accesses wide characters from string s and writes them to the output stream
stream. The function does not write the terminating NULL wide character. It returns a non-
negative value if it has not set the error indicator; otherwise, it returns WEOF.

11.32.6 fwide

int fwide (FILE *stream, int mode) ;

The function determines the orientation of the stream stream. If mode is greater than zero, it
first attempts to make the stream wide oriented. If mode is less than zero, it first attempts to
make the stream byte oriented. In any event, the function returns:

m A value greater than zero if the stream is left-wide oriented
m Zero if the stream is left unbound

m A value less than zero if the stream is left-byte oriented

In no event will the function alter the orientation of a stream once it has been oriented.

11.32.7 fwprintf

int fwprintf (FILE *restrict stream, const wchar t *restrict format,

L)

The function generates formatted text, under the control of the format format and any
additional arguments, and writes each generated wide character to the stream stream. It
returns the number of wide characters generated, or it returns a negative value if the function
sets the error indicator for the stream.

11.32.8 fwscanf

int fwscanf (FILE *restrict stream, const wchar t *restrict format,

L)

The function scans formatted text, under the control of the format format and any additional

arguments. It obtains each scanned character from the stream stream. It returns the number of
input items matched and assigned, or it returns EOF if the function does not store values before
it sets the end-of-file or error indicator for the stream.

80-N2040-13 Rev. D 280

Qualcomm Hexagon C Library User Guide Header files

11.32.9 getwc

wint t getwc (FILE *stream) ;

The function has the same effect as fgetwc (stream) except that a macro version of getwc
can evaluate stream more than once.

11.32.10getwchar

wint t getwchar (void) ;

The function has the same effect as fgetwc (stdin).

11.32.11mbrlen

size t mbrlen(const char *restrict s, size t n, mbstate t *restrict
ps) ;

The function is equivalent to the call:

mbrtowc (0, s, n, ps != 0 ? ps : &internal)

Where internal is an object of type mbstate t internal to the mbrlen function. At program
startup, internal is initialized to the initial conversion state. No other library function alters
the value stored in internal.

The function returns:

m (size_ t)-3 —Ifno additional bytes are needed to complete the next multibyte character,
in which case the resulting conversion state indicates that no additional bytes have been
converted and the next multibyte character has been produced

m (size t)-2—If] after converting all n characters, the resulting conversion state indicates
an incomplete multibyte character

m (size_ t)-1— If the function detects an encoding error before completing the next
multibyte character, in which case the function stores the value EILSEQ in errno and
leaves the resulting conversion state undefined

m Zero — If the next completed character is a NULL character, in which case the resulting
conversion state is the initial conversion state

m x— The number of bytes needed to complete the next multibyte character, in which case
the resulting conversion state indicates that x bytes have been converted and the next
multibyte character has been produced

Thus, mbrlen effectively returns the number of bytes that would be consumed in successfully
converting a multibyte character to a wide character (without storing the converted wide
character), or an error code if the conversion cannot succeed.

80-N2040-13 Rev. D 281

Qualcomm Hexagon C Library User Guide Header files

11.32.12mbrtowc

size t mbrtowc(wchar t *restrict pwc, const char *restrict s, size t
n, mbstate t *restrict ps);

The function determines the number of bytes in a multibyte string that completes the next
multibyte character, if possible.

If ps is not a NULL pointer, the conversion state for the multibyte string is assumed to be *ps.
Otherwise, it is assumed to be &internal, where internal is an object of type mbstate t
internal to the mbrtowc function. At program startup, internal is initialized to the initial
conversion state. No other library function alters the value stored in internal.

If s is not a NULL pointer, the function determines x, the number of bytes in the multibyte
string s that complete or contribute to the next multibyte character. (x cannot be greater than
n.) Otherwise, the function effectively returns mbrtowc (0, "", 1, ps),ignoring pwc and n.
(The function thus returns zero only if the conversion state indicates that no incomplete
multibyte character is pending from a previous call to mbrlen, mbrtowc, or mbsrtowcs for
the same string and conversion state.)

If pwc is not a NULL pointer, the function converts a completed multibyte character to its
corresponding wide-character value and stores that value in *pwc.

The function returns:

m (size_ t)-3 —Ifno additional bytes are needed to complete the next multibyte character,
in which case the resulting conversion state indicates that no additional bytes have been
converted and the next multibyte character has been produced

m (size t)-2—If] after converting all n characters, the resulting conversion state indicates
an incomplete multibyte character

m (size_ t)-1— If the function detects an encoding error before completing the next
multibyte character, in which case the function stores the value EILSEQ in errno and
leaves the resulting conversion state undefined

m Zero — If the next completed character is a NULL character, in which case the resulting
conversion state is the initial conversion state

m x— The number of bytes needed to complete the next multibyte character, in which case
the resulting conversion state indicates that x bytes have been converted and the next
multibyte character has been produced

11.32.13mbsinit

int mbsinit (const mbstate t *ps);

The function returns a nonzero value if ps is a NULL pointer or if *ps designates an initial
conversion state. Otherwise, it returns zero.

80-N2040-13 Rev. D 282

Qualcomm Hexagon C Library User Guide Header files

11.32.14mbsrtowcs

size t mbsrtowcs(wchar t *restrict dst, const char **restrict src,
size t len, mbstate t *restrict ps);

The function converts the multibyte string beginning at *src to a sequence of wide characters
as if by repeated calls of the form:

x = mbrtowc (dst, *src, n, ps != 0 ? ps : &internal)

Where n is a value > 0, and internal is an object of type mbstate_t internal to the mbsrtowcs
function. At program startup, internal is initialized to the initial conversion state. No other
library function alters the value stored in internal.

If dst is not a NULL pointer, the mbsrtowcs function stores at most 1en wide characters by
calls to mbrtowc. The function effectively increments dst by one and *src by x after each
call to mbrtowc that stores a converted wide character. After a call that returns zero,
mbsrtowcs stores a NULL wide character at dst and stores a NULL pointer at *src.

If ast is a NULL pointer, len is effectively assigned a large value.

The function returns:

m (size t)-1ifacall tombrtowc returns (size t) -1, indicating that it has detected an
encoding error before completing the next multibyte character

m The number of multibyte characters successfully converted, not including the terminating
NULL character

11.32.15mbstate_t

typedef o-type mbstate t;

The type is an object type o-type that can represent a conversion state for any of the functions
mbrlen, mbrtowc, mbsrtowcs, wertomb, Or wesrtombs. A definition of the following form
ensures that mbst represents the initial conversion state:

mbstate t mbst = {0};

However, other values stored in an object of type mbstate t can also represent this state. To
test safely for this state, use the function mbsinit.

11.32.16NULL

#define NULL <either 0, 0L, or (void *)0> [0in C++]

The macro yields a NULL pointer constant that is usable as an address constant expression.

80-N2040-13 Rev. D 283

Qualcomm Hexagon C Library User Guide Header files

11.32.17putwc

wint t putwc(wchar t c, FILE *stream);

The function has the same effect as fputwc (¢, stream) except that a macro version of
putwc can evaluate stream more than once.

11.32.18putwchar

wint t putwchar (wchar t c);

The function has the same effect as fputwec (¢, stdout).

11.32.19size _t

typedef ui-type size t;

The type is the unsigned integer type ui-type of an object that you declare to store the result
of the sizeof operator.

11.32.20swprintf

int swprintf (wchar_t *restrict s, size t n, const wchar_t *restrict
format, ...);

The function generates formatted text, under the control of the format format and any
additional arguments, and stores each generated character in successive locations of the array
object whose first element has the address s. The function concludes by storing a NULL wide
character in the next location of the array. If it cannot generate and store all characters in an
array of size n, the function returns a negative number. Otherwise, it returns the number of
wide characters generated—not including the NULL wide character.

11.32.21swscanf

int swscanf (const wchar t *restrict s, const wchar t *restrict format,

L)

The function scans formatted text, under the control of the format format and any additional
arguments. It accesses each scanned character from successive locations of the array object
whose first element has the address s. It returns the number of items matched and assigned, or
it returns EOF if the function does not store values before it accesses a NULL wide character
from the array.

80-N2040-13 Rev. D 284

Qualcomm Hexagon C Library User Guide Header files

11.32.22tm

struct tm;

The structure contains members that describe various properties of the calendar time. The
declaration in this header leaves struct tman incomplete type. Include the header <time.h>
to complete the type.

11.32.23ungetwc

wint t ungetwc(wint t ¢, FILE *stream);

If ¢ is not equal to WEOF, the function stores (wchar t)c in the object whose address is
stream and clears the end-of-file indicator. If ¢ equals WEOF or the store cannot occur, the
function returns WEOF; otherwise, it returns (wchar t)c. A subsequent library function call
that reads a wide character from the stream stream obtains this stored value, which is then
forgotten.

Thus, you can effectively push back a wide character to a stream after reading a wide
character.

11.32.24vfwprintf

int vfwprintf (FILE *restrict stream, const wchar t *restrict format,
va_list arg);

The function generates formatted text, under the control of the format format and any
additional arguments, and writes each generated wide character to the stream stream. It
returns the number of wide characters generated, or it returns a negative value if the function
sets the error indicator for the stream.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

11.32.25vfwscanf

int vfwscanf (FILE *restrict stream, const wchar t *restrict format,
va_list ap); [Added with C99]

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned wide character from the stream stream. It returns the
number of input items matched and assigned, or it returns WeOF if the function does not store
values before it sets the end-of-file or error indicator for the stream.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

80-N2040-13 Rev. D 285

Qualcomm Hexagon C Library User Guide Header files

11.32.26vswprintf

int vswprintf (wchar t *restrict s, size t n, const wchar t *restrict
format, va_ list arg);

The function generates formatted text, under the control of the format format and any
additional arguments, and stores each generated wide character in successive locations of the
array object whose first element has the address s. The function concludes by storing a NULL
wide character in the next location of the array.

If it cannot generate and store all characters in an array of size n, the function returns a
negative number. Otherwise, it returns the number of wide characters generated—not
including the NULL wide character.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

11.32.27vswscanf

int vswscanf (const wchar t *restrict s, const wchar t *restrict
format, va list ap); [Added with C99]

The function scans formatted text, under the control of the format format and any additional
arguments. It accesses each scanned wide character from successive locations of the array
object whose first element has the address s. It returns the number of items matched and
assigned, or it returns WEOF if the function does not store values before it accesses a NULL
character from the array.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

11.32.28vwprintf

int vwprintf (const wchar_t *restrict format, va list arg);

The function generates formatted text, under the control of the format format and any
additional arguments, and writes each generated wide character to the stream stdout. It
returns the number of characters generated, or a negative value if the function sets the error
indicator for the stream.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

80-N2040-13 Rev. D 286

Qualcomm Hexagon C Library User Guide Header files

11.32.29vwscanf

int vwscanf (const wchar t *restrict format, va list ap); [Added
withc99]

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned wide character from the stream stdin. It returns the
number of input items matched and assigned, or it returns WeOF if the function does not store
values before it sets the end-of-file or error indicators for the stream.

The function accesses additional arguments by using the context information designated by
ap. The program must execute the macro va_start before it calls the function, and then
execute the macro va_end after the function returns.

11.32.30WCHAR_MAX

#define WCHAR MAX <#if expression >= 127>

The macro yields the maximum value for type wchar t.

11.32.31WCHAR_MIN

#define WCHAR MIN <#if expression <= 0>

The macro yields the minimum value for type wchar t.

11.32.32wchar _t

typedef i-type wchar t; [Keyword in C++]

The type is the integer type i-type of a wide-character constant, such as L' X'. Declare an
object of type wchar tto hold a wide character.

11.32.33wcrtomb

size t wcrtomb(char *restrict s, wchar t wc, mbstate t *restrict ps);

The function determines the number of bytes needed to represent the wide character wc as a
multibyte character, if possible. (Not all values representable as type wchar t are necessarily
valid wide-character codes.)

If ps is not a NULL pointer, the conversion state for the multibyte string is assumed to be *ps.
Otherwise, it is assumed to be &internal, where internal is an object of type mbstate t
internal to the wertomb function. At program startup, internal is initialized to the initial
conversion state. No other library function alters the value stored in internal.

80-N2040-13 Rev. D 287

Qualcomm Hexagon C Library User Guide Header files

If s is not a NULL pointer and wc is a valid wide-character code, the function determines x,
the number of bytes needed to represent wc as a multibyte character, and stores the converted
bytes in the array of char beginning at s. (x cannot be greater than MB_CcUR_MaX.) If wcis a
NULL wide character, the function stores any shift sequence needed to restore the initial shift
state, followed by a NULL byte. The resulting conversion state is the initial conversion state.

If s is a NULL pointer, the function effectively returns wertomb (buf, L'\0', ps), where
buf is a buffer internal to the function. (The function thus returns the number of bytes needed
to restore the initial conversion state and to terminate the multibyte string pending from a
previous call to wertomb or wesrtombs for the same string and conversion state.)

The function returns:

m (size t)-1-Ifwc isan invalid wide-character code, in which case the function stores
the value EILSEQ in errno and leaves the resulting conversion state undefined

m x — The number of bytes needed to complete the next multibyte character, in which case
the resulting conversion state indicates that x bytes have been generated

11.32.34wcscat

wchar t *wcscat (wchar t *restrict sl, const wchar t *restrict s2);

The function copies the wide string s2, including its terminating NULL wide character, to
successive elements of the array that stores the wide string s1, beginning with the element that
stores the terminating NULL wide character of s1. It returns s1.

11.32.35wcschr
wchar t *wcschr (const wchar t *s, wchar t c); [Notin C++]
const wchar t *wcschr (const wchar t *s, wchar t c); [C++only]

wchar t *wcschr (wchar t *s, wchar t c¢); [C++only]

The function searches for the first element of the wide strings that equals c. It considers the
terminating NULL wide character as part of the wide string. If successful, the function returns
the address of the matching element; otherwise, it returns a NULL pointer.

11.32.36wcscmp
int wcscmp (const wchar t *sl, const wchar t *s2);

The function compares successive elements from two wide strings, s1 and s2, until it finds
elements that are not equal.

m [fall elements are equal, the function returns zero.

m Ifthe differing element from s1 is greater than the element from s2, the function returns a
positive number.

m Otherwise, the function returns a negative number.

80-N2040-13 Rev. D 288

Qualcomm Hexagon C Library User Guide Header files

11.32.37wcscoll

int wcscoll (const wchar t *sl, const wchar t *s2);

The function compares two wide strings, s1 and s2, using a comparison rule that depends on
the current locale. If s1 compares greater than s2 by this rule, the function returns a positive
number. If the two wide strings compare equal, it returns zero. Otherwise, it returns a negative
number.

11.32.38wcscpy
wchar t *wcscpy(wchar t *restrict sl, const wchar t *restrict s2);

The function copies the wide string s2, including its terminating NULL wide character, to
successive elements of the array whose first element has the address s1. It returns s1.

11.32.39wcscspn

size t wcscspn(const wchar t *sl, const wchar t *s2);

The function searches for the first element s1[i] in the wide string s1 that equals any one of the
elements of the wide string s2 and returns i. Each terminating NULL wide character is
considered part of its wide string.

11.32.40wcsftime

size_t wcsftime(wchar t *restrict s, size t maxsize, const wchar_ t
*restrict format, const struct tm *restrict timeptr) ;

The function generates formatted text, under the control of the format format and the values
stored in the time structure *tptr. It stores each generated wide character in successive
locations of the array object of size n whose first element has the address s. The function then
stores a NULL wide character in the next location of the array. It returns x, the number of wide
characters generated, if x < n; otherwise, it returns zero, and the values stored in the array are
indeterminate.

For each wide character other than % in the format, the function stores that wide character in
the array object. Each occurrence of % followed by another character in the format is a
conversion specifier. For each conversion specifier, the function stores a replacement wide
character sequence. Conversion specifiers are the same as for the function strftime. The
current locale category LC_TIME can affect these replacement character sequences.

11.32.41wcslen

size t wcslen(const wchar t *s);

The function returns the number of wide characters in the wide strings, not including its
terminating NULL wide character.

80-N2040-13 Rev. D 289

Qualcomm Hexagon C Library User Guide Header files

11.32.42wcsncat

wchar t *wcsncat (wchar t *restrict sl, const wchar t *restrict s2,
size t n);

The function copies the wide string s2, not including its terminating NULL wide character, to
successive elements of the array that stores the wide string s1, beginning with the element that
stores the terminating NULL wide character of s1. The function copies no more than n wide
characters from s2. It then stores a NULL wide character, in the next element to be altered in
s1, and returns s1.

11.32.43wcsncmp

int wecsncmp (const wchar t *sl, const wchar t *s2, size t n);

The function compares successive elements from two wide strings, s1 and s2, until it finds
elements that are not equal or until it has compared the first n elements of the two wide strings.

m [fall elements are equal, the function returns zero.

m [fthe differing element from s1 is greater than the element from s2, the function returns a
positive number.

m Otherwise, it returns a negative number.

11.32.44wcsncpy

wchar t *wcsncpy(wchar t *restrict sl, const wchar t *restrict s2,
size t n);

The function copies the wide string s2, not including its terminating NULL wide character, to
successive elements of the array whose first element has the address s1. It copies no more than
n wide characters from s2. The function then stores zero or more NULL wide characters in the
next elements to be altered ins1 until it stores a total of n wide characters. It returns s1.

11.32.45wcspbrk

wchar t *wcspbrk(const wchar t *sl, const wchar t *s2); [Notin C+t]
const wchar t *wcspbrk(const wchar t *sl, const wchar t *s2); [C++only]
wchar t *wcspbrk(wchar t *sl, const wchar t *s2); [C++ only]

The function searches for the first element s1 [1] in the wide string s1 that equals any one of
the elements of the wide string s2. It considers each terminating NULL wide character as part
of its wide string. If s1 [1] is not the terminating NULL wide character, the function returns
&s1[1]; otherwise, it returns a NULL pointer.

80-N2040-13 Rev. D 290

Qualcomm Hexagon C Library User Guide Header files

11.32.46wcsrchr

wchar t *wcsrchr (const wchar t *s, wchar t c); [Notin C++]
const wchar t *wcsrchr (const wchar t *s, wchar t c); [C+t only]
wchar t *wesrchr(wchar t *s, wchar t c); [C++only]

The function searches for the last element of the wide string s that equals c. It considers the
terminating NULL wide character as part of the wide string. If successful, the function returns
the address of the matching element; otherwise, it returns a NULL pointer.

11.32.47wcsrtombs

size t wcsrtombs(char *restrict dst, const wchar t **restrict src,
size t len, mbstate t *restrict ps);

The function converts the wide-character string beginning at *src to a sequence of multibyte
characters as if by repeated calls of the form:

X = wcrtomb (dst ? dst : buf, *src, ps != 0 ? ps : &internal)

Where buf is an array of type char and internal is an object of type mbstate_t, both internal
to the wesrtombs function. At program startup, internal is initialized to the initial
conversion state. No other library function alters the value stored in internal.

If dst is not a NULL pointer, the wesrtombs function stores at most 1en bytes by calls to
wertomb. The function effectively increments dst by x and *src by one after each call to
wcrtomb that stores a complete converted multibyte character in the remaining space
available. After a call that stores a complete NULL multibyte character at dst (including any
shift sequence needed to restore the initial shift state), the function stores a NULL pointer at
*src.

If dst is a NULL pointer, 1en is effectively assigned a large value.

The function returns:

m (size_ t)-1ifacall to wertomb returns (size_t) -1, indicating that it has detected an
invalid wide-character code

m The number of bytes successfully converted, not including the terminating NULL byte

11.32.48wcsspn

size_t wcsspn(const wchar t *sl, const wchar t *s2);

The function searches for the first element s1 [1] in the wide string s1 that equals none of the
elements of the wide string s2 and returns i. It considers the terminating NULL wide
character as part of the wide string s1 only.

80-N2040-13 Rev. D 291

Qualcomm Hexagon C Library User Guide Header files

11.32.49wcsstr

wchar t *wcsstr(const wchar t *sl, const wchar t *s2); [Notin C++]
const wchar t *wcsstr(const wchar t *sl, const wchar t *s2); [C++ only]
wchar t *wcsstr(wchar t *sl, const wchar t *s2); [C++ only]

The function searches for the first sequence of elements in the wide string s1 that matches the
sequence of elements in the wide string s2, not including its terminating NULL wide
character. If successful, the function returns the address of the matching first element;
otherwise, it returns a NULL pointer.

11.32.50wcstod

double wcstod(const wchar t *restrict nptr, wchar t **restrict
endptr) ;

The function converts the initial wide characters of the wide strings to an equivalent value x of
type double. If endptr is not a NULL pointer, the function stores a pointer to the unconverted
remainder of the wide string in *endptr. The function then returns x.

The initial wide characters of the wide string s must match the same pattern as recognized by
the function strtod, where each wide character wc is converted as if by calling wetob (wc)).

If the wide string s matches this pattern, its equivalent value is the value returned by strtod
for the converted sequence. If the wide string s does not match a valid pattern, the value stored
in *endptr is s, and x is zero. If a range error occurs, westod behaves exactly as the functions
declared in <math.hs>.

11.32.51wcstof

float wcstof (const wchar t *restrict nptr,wchar t **restrict endptr);

The function converts the initial wide characters of the wide strings to an equivalent value x of
type £loat. If endptr is not a NULL pointer, the function stores a pointer to the unconverted
remainder of the wide string in *endptr. The function then returns x.

The initial wide characters of the wide string s must match the same pattern as recognized by
the function strtod, where each wide character wc is converted as if by calling wetob (wc)).

If the wide string s matches this pattern, its equivalent value is the value returned by strtof
for the converted sequence. If the wide string s does not match a valid pattern, the value stored
in *endptr is s, and x is zero. If a range error occurs, westod behaves exactly as the functions
declared in <math.h>.

80-N2040-13 Rev. D 292

Qualcomm Hexagon C Library User Guide Header files

11.32.52wcstok

wchar t *wcstok (wchar t *restrict sl, const wchar t *restrict s2,
wchar t **restrict ptr);

If s1 is not a NULL pointer, the function begins a search of the wide string s1. Otherwise, it
begins a search of the wide string whose address was last stored in *ptr on an earlier call to
the function, as described below. The search proceeds as follows:

m The function searches the wide string for begin, the address of the first element that equals
none of the elements of the wide string s2 (a set of token separators). It considers the
terminating NULL character as part of the search wide string only.

m [f the search does not find an element, the function stores the address of the terminating
NULL wide character in *ptr (so that a subsequent search beginning with that address
will fail) and returns a NULL pointer. Otherwise, the function searches from begin for
end, the address of the first element that equals any one of the elements of the wide string
s2. It again considers the terminating NULL wide character as part of the search string
only.

m [f the search does not find an element, the function stores the address of the terminating
NULL wide character in *ptr. Otherwise, it stores a NULL wide character in the element
whose address is end. Then it stores the address of the next element after end in *ptr (so
that a subsequent search beginning with that address will continue with the remaining
elements of the string) and returns begin.

11.32.53wcstol

long wcstol (const wchar t *restrict nptr, wchar t **restrict endptr,
int base) ;

The function converts the initial wide characters of the wide strings to an equivalent value x of
type long. If endptr is not a NULL pointer, the function stores a pointer to the unconverted
remainder of the wide string in *endptr. The function then returns x.

The initial wide characters of the wide string s must match the same pattern as recognized by
the function strtol, with the same base argument, where each wide character wc is converted
as if by calling wetob (we)).

If the wide string s matches this pattern, its equivalent value is the value returned by strtol,
with the same base argument, for the converted sequence. If the wide string s does not match a
valid pattern, the value stored in *endptr is s, and x is zero. If the equivalent value is too
large in magnitude to represent as type long, wcstol stores the value of ERANGE in errno and
returns either LONG_MAX if x is positive or LONG_MIN if x is negative.

80-N2040-13 Rev. D 293

Qualcomm Hexagon C Library User Guide Header files

11.32.54wcstold

long double wcstof (const wchar t *restrict nptr,wchar t **restrict
endptr) ;

The function converts the initial wide characters of the wide strings to an equivalent value x of
type long double. If endptr is not a NULL pointer, the function stores a pointer to the
unconverted remainder of the wide string in *endptr. The function then returns x.

The initial wide characters of the wide string s must match the same pattern as recognized by
the function strtod, where each wide character wc is converted as if by calling wctob (wc)).

If the wide string s matches this pattern, its equivalent value is the value returned by strtold
for the converted sequence. If the wide string s does not match a valid pattern, the value stored
in *endptr is s, and x is zero. If a range error occurs, westod behaves exactly as the functions
declared in <math.hs>.

11.32.55wcstoll

long long wcstoll (const wchar t *restrict nptr, wchar t **restrict
endptr, int base);

The function converts the initial wide characters of the wide strings to an equivalent value x of
type long long. If endptr is not a NULL pointer, the function stores a pointer to the
unconverted remainder of the wide string in *endptr. The function then returns x.

The initial wide characters of the wide string s must match the same pattern as recognized by
the function strtol, with the same base argument, where each wide character wc is converted
as if by calling wetob (we)).

If the wide string s matches this pattern, its equivalent value is the value returned by strtoll,
with the same base argument, for the converted sequence. If the wide strings does not match a
valid pattern, the value stored in *endptr is s, and x is zero. If the equivalent value is too
large in magnitude to represent as type long long, wcstoll stores the value of ERANGE in
errno and returns either LLONG MAX if x is positive or LLONG MIN if x is negative.

11.32.56wcstoul

unsigned long wcstoul (const wchar t *restrict nptr,wchar t **restrict
endptr, int base);

The function converts the initial wide characters of the wide strings to an equivalent value x of
type unsigned long. If endptr is not a NULL pointer, it stores a pointer to the unconverted
remainder of the wide string in *endptr. The function then returns x.

westoul converts strings exactly as does westol, but checks only if the equivalent value is too
large to represent as type unsigned long. In this case, westoul stores the value of ERANGE in
errno and returns ULONG MAX.

80-N2040-13 Rev. D 294

Qualcomm Hexagon C Library User Guide Header files

11.32.57wcstoull

unsigned long long wcstoull (const wchar t *restrict nptr,wchar t
**restrict endptr, int base);

The function converts the initial wide characters of the wide strings to an equivalent value x of
type unsigned long long. If endptr is not a NULL pointer, it stores a pointer to the
unconverted remainder of the wide string in *endptr. The function then returns x.

westoull converts strings exactly as does westoll, but checks only if the equivalent value is
too large to represent as type unsigned long long. In this case, westoull stores the value of
ERANGE in errno and returns ULLONG MAX.

11.32.58wcsxfrm

size t wesxfrm(wchar t *restrict sl, const wchar t *restrict s2,
size t n);

The function stores a wide string in the array whose first element has the address s1. It stores
no more than n wide characters, including the terminating NULL wide character, and returns
the number of wide characters needed to represent the entire wide string, not including the
terminating NULL wide character. If the value returned is n or greater, the values stored in the
array are indeterminate. (If n is zero, s1 can be a NULL pointer.)

wesxfrm generates the wide string it stores from the wide string s2 by using a transformation
rule that depends on the current locale. For example, if x is a transformation of s1 and y is a
transformation of s2, wescmp (x, y) returns the same value as wescoll (s1, s2).

11.32.59wctob

int wctob(wint t c);

The function determines whether c can be represented as a one-byte multibyte character x,
beginning in the initial shift state. (It effectively calls wertomb to make the conversion.) If so,
the function returns x. Otherwise, it returns EOF.

11.32.60WEOF

#define WEOF <wint_ t constant expression>

The macro yields the return value, of type wint_t, used to signal the end of a wide stream or
to report an error condition.

11.32.61wint_t

typedef i type wint t;

The type is the integer type i _type that can represent all values of type wchar t as well as the
value of the macro weOF, and that does not change when promoted.

80-N2040-13 Rev. D 295

Qualcomm Hexagon C Library User Guide Header files

11.32.62wmemchr

wchar t *wmemchr (const wchar t *s, wchar t ¢, size t n); [Notin C+t]
const wchar t *wmemchr (const wchar t *s, wchar t ¢, size t n); [C++
only]

wchar t *wmemchr (wchar t *s, wchar t ¢, size t n); [C++only]

The function searches for the first element of an array beginning at the address s with size n,
that equals c. If successful, it returns the address of the matching element; otherwise, it returns
a NULL pointer.

11.32.63wmemcmp

int wmemcmp (const wchar t *sl, const wchar t *s2, size t n);

The function compares successive elements from two arrays beginning at the addresses s1 and
2 (both of size n), until it finds elements that are not equal:

m Ifall elements are equal, the function returns zero.

m [fthe differing element from s1 is greater than the element from s2, the function returns a
positive number.

m Otherwise, the function returns a negative number.

11.32.64wmemcpy

wchar t *wmemcpy(wchar t *restrict sl, const wchar t *restrict s2,
size t n);

The function copies the array beginning at the address s2 to the array beginning at the address
s1 (both of size n). It returns s1. The elements of the arrays can be accessed and stored in any
order.

11.32.65wmemmove

wchar t *wmemmove (wchar t *sl, const wchar t *s2, size t n);

The function copies the array beginning at s2 to the array beginning at s1 (both of size n). It
returns s1.

If the arrays overlap, the function accesses each of the element values from s2 before it stores
a new value in that element, so the copy is not corrupted.

11.32.66wmemset

wchar t *wmemset (wchar t *s, wchar t c, size t n);

The function stores c in each of the elements of the array beginning at s, with size n. It
returns s.

80-N2040-13 Rev. D 296

Qualcomm Hexagon C Library User Guide Header files

11.32.67wprintf

int wprintf (const wchar t *restrict format, ...);

The function generates formatted text, under the control of the format format and any
additional arguments, and writes each generated wide character to the stream stdout. It
returns the number of wide characters generated, or it returns a negative value if the function
sets the error indicator for the stream.

11.32.68wscanf

int wscanf (const wchar t *restrict format, ...);

The function scans formatted text, under the control of the format format and any additional
arguments. It obtains each scanned wide character from the stream stdin. It returns the
number of input items matched and assigned, or it returns EOF if the function does not store
values before it sets the end-of-file or error indicators for the stream.

80-N2040-13 Rev. D 297

Qualcomm Hexagon C Library User Guide Header files

11.33 <wctype.h>

[Added with Amendment 1]

Include the standard header <wctype. h> to declare several functions that are useful for
classifying and mapping codes from the target wide-character set.

Every function that has a parameter of type wint_t can accept the value of the macro WEOF or
any valid wide-character code (of type wchar t). Thus, the argument can be the value
returned by any of the functions: btowc, fgetwc, fputwc, getwe, getwchar, putwc,
putwchar, towctrans, towlower, towupper, Or ungetwc. You must not call these functions
with other wide-character argument values.

The wide-character classification functions are strongly related to the (byte) character
classification functions. Each function i sxxx has a corresponding wide-character
classification function iswxxx. Moreover, the wide-character classification functions are
interrelated much the same way as their corresponding byte functions, with two added
provisos:

m The function iswprint, unlike isprint, can return a nonzero value for additional space
characters besides the wide-character equivalent of space (L' '). Any such additional
characters return a nonzero value for i swspace and return zero for iswgraph or
iswpunct.

m The characters in each wide-character class are a superset of the characters in the
corresponding byte class. If the call 1sXXX (c) returns a nonzero value, the corresponding
call iswxxX (btowc (c)) also returns a nonzero value.

An implementation can define additional characters that return nonzero for some of these
functions. Any character set can contain additional characters that return nonzero for:

m iswcntrl (provided the characters cause iswprint to return zero)

m iswpunct (provided the characters cause i swalnum to return zero)

Moreover, a locale other than the "C" locale can define additional characters for:

m iswalpha, iswupper, and iswlower (provided the characters cause iswentrl,
iswdigit, iswpunct, and iswspace to return zero)

m iswblank (provided the characters cause i swalnum to return zero)

m iswspace (provided the characters cause i swpunct to return zero)

The last rule differs slightly from the corresponding rule for the function isspace, as
indicated above. Note also that an implementation can define a locale other than the "C" locale
in which a character can cause iswalpha (and hence iswalnum) to return nonzero, yet still
causeiswupper and iswlower to return zero.

80-N2040-13 Rev. D 298

Qualcomm Hexagon C Library User Guide Header files

11.33.1 WEOF

#define WEOF <wint t constant expression>

The macro yields the return value, of type wint_t, used to signal the end of a wide stream or
to report an error condition.

/* TYPES */

typedef s type wctrans t;
typedef s type wctype t;
typedef i type wint t;

/* FUNCTIONS */ int iswalnum(wint t c);
int iswalpha(wint t c¢);

int iswblank(wint t c); [Added with C99]
int iswentrl(wint t c);

int iswctype(wint t c, wctype t category);
int iswdigit (wint t c
int iswgraph(wint t c
int iswlower (wint t c
int iswprint (wint t c
int iswpunct(wint t c
int iswspace(wint t c
int iswupper(wint t c
int iswxdigit (wint t

wint t towctrans(wint t c, wctrans t category) ;
wint t towlower (wint t c);
wint t towupper (wint t c);

wctrans t wctrans (const char *property) ;
wctype t wctype (const char *property);

11.33.2 iswalnum

int iswalnum(wint_t c);

The function returns nonzero if ¢ is any of:

abcdefghijklmnopgrstuvwzxyz
ABCDEFGHIJKLMNOPQRSTUVWIXY?Z
01234567829

Or any other locale-specific alphabetic character.

11.33.3 iswalpha

int iswalpha(wint t c);

The function returns nonzero if ¢ is any of:

abcdefghijklmnopgr

stuvwzxy
ABCDEFGHIJKLMNOPQRSTUVWIXY

4
Z

Or any other locale-specific alphabetic character.

80-N2040-13 Rev. D 299

Qualcomm Hexagon C Library User Guide Header files

11.33.4 iswblank

int iswblank (wint t c); [Added with C99]

The function returns nonzero if ¢ is any of:

HT space

Or any other locale-specific blank character.

11.33.5 iswcntrl

int iswecntrl(wint t c);

The function returns nonzero if ¢ is any of:

BEL BS CR FF HT NL VT

Or any other implementation-defined control character.

11.33.6 iswctype
int iswctype(wint t c, wctype t category);

The function returns nonzero if ¢ is any character in the category category. The value of
category must have been returned by an earlier successful call to wetype.

11.33.7 iswdigit

int iswdigit(wint t c¢);

The function returns nonzero if ¢ is any of:

01234567829

11.33.8 iswgraph
int iswgraph(wint_t c¢);

The function returns nonzero if ¢ is any character for which either i swalnum or iswpunct
returns nonzero.

11.33.9 iswlower

int iswlower(wint t c);

The function returns nonzero if c is any of:

abcdefghijklmnopgrstuvwixyz

Or any other locale-specific lowercase character.

80-N2040-13 Rev. D 300

Qualcomm Hexagon C Library User Guide Header files

11.33.10iswprint

int iswprint(wint_t c);

The function returns nonzero if c is space, a character for which i swgraph returns nonzero, or
an implementation-defined subset of the characters for which iswspace returns nonzero.

11.33.11iswpunct
int iswpunct (wint t c);

The function returns nonzero if ¢ is any of:
P s et () s <e=>2 LN e, -0/ {]}~

Or any other implementation-defined punctuation character.

11.33.12iswspace
int iswspace(wint t c);

The function returns nonzero if ¢ is any of:

CR FF HT NL VT space

Or any other locale-specific space character.

11.33.13iswupper
int iswupper(wint t c);

The function returns nonzero if ¢ is any of:

ABCDEFGHIJKLMNOPQRSTUVWIXYZ

Or any other locale-specific uppercase character.

11.33.14iswxdigit

int iswxdigit (wint t c);

The function returns nonzero if ¢ is any of

0123456789 abcdefABCDETF

80-N2040-13 Rev. D 301

Qualcomm Hexagon C Library User Guide Header files

11.33.15towctrans

wint t towctrans(wint t c, wctrans t category);

The function returns the transformation of the character ¢, using the transform in the category
category. The value of category must have been returned by an earlier successful call
towctrans.

11.33.16towlower

wint_t towlower (wint_t c);

The function returns the corresponding lowercase letter if one exists and ifiswupper (c);
otherwise, it returns c.

11.33.17towupper

wint t towupper (wint t c);

The function returns both the corresponding uppercase letter, if one exists, and
ifiswlower (c); otherwise, it returns c.

11.33.18wctrans

wctrans t wctrans (const char *property) ;

The function determines a mapping from one set of wide-character codes to another. If the
LC_CTYPE category of the current locale does not define a mapping whose name matches the
property string property, the function returns zero. Otherwise, it returns a nonzero value
suitable for use as the second argument to a subsequent call to towctrans.

The following pairs of calls have the same behavior in all locales (but an implementation can
define additional mappings even in the "C" locale):

towlower (c) same as towctrans(c, wctrans("tolower"))towupper (c) same
as towctrans(c, wctrans ("toupper"))

11.33.19wctrans_t

typedef s type wctrans_ t;

The type is the scalar type s-type that can represent locale-specific character mappings, as
specified by the return value of wctrans.

80-N2040-13 Rev. D 302

Qualcomm Hexagon C Library User Guide

Header files

11.33.20wctype

wctype t wctype (const char *property)
*property) ;

;jwctrans t wctrans (const char

The function determines a classification rule for wide-character codes. If the Lc_CTYPE
category of the current locale does not define a classification rule whose name matches the
property string property, the function returns zero. Otherwise, it returns a nonzero value

suitable for use as the second argument to a subsequent call totowctrans.

The following pairs of calls have the same behavior in all locales (but an implementation can
define additional classification rules even in the "C" locale):

iswalnum
iswalpha
iswblank
iswentrl
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigi

11.33.21wctype_t

as
as
as
as
as
as
as
as
as
as
as

iswctype
iswctype
iswctype
iswctype
iswctype
iswctype
iswctype
iswctype
iswctype
iswctype
iswctype (c

same as iswctype (c

typedef s type wctype t;

wctype ("upper"
, wctype ("xdigi

wctype ("alnum"))
wctype ("alpha"))
wctype ("blank"))
wctype ("cntrl"))
wctype ("digit"))
wctype ("graph"))
wctype ("lower"))
wctype (np int™"))
wctype ("punct"))
wctype ("space"))

))

t

The type is the scalar type s-type that can represent locale-specific character classifications,

as specified by the return value ofwctype.

11.33.22wint_t

typedef i type wint t;

The type is the integer type i _type that can represent all values of type wchar t as well as
the value of weOF, and that does not change when promoted.

80-N2040-13 Rev. D

303

12 Copyright and license notices

12.1 Dinkumware notice

Dinkumware, Ltd.
398 Main Street
Concord MA 01742

Dinkum® C++ Library developed by P.J. Plauger

Dinkum C++ Library Reference developed by P.J. Plauger

Dinkum C Library Reference developed by P.J. Plauger and Jim Brodie
Additional libraries and documentation developed by Dinkumware, Ltd.

The Dinkum C++ Library and additional libraries, in machine-readable or printed form
(Dinkum Library), and the Dinkum C++ Library Reference and additional documentation, in
machine-readable or printed form (Dinkum Reference), hereafter in whole or in part the
Product, are all copyrighted by P.J. Plauger and/or Dinkumware, Ltd. ALL RIGHTS
RESERVED. The Product is derived in part from books copyright © 1992-2001 by P.J.
Plauger.

Dinkumware, Ltd. and P.J. Plauger (Licensor) retain exclusive ownership of this Product. It is
licensed to you (Licensee) in accordance with the terms specifically stated in this Notice. If
you have obtained this Product from a third party or under a special license from Dinkumware,
Ltd., additional restrictions may also apply. You must otherwise treat the Product the same as
other copyrighted material, such as a book or recording. You may also exercise certain rights
particular to computer software under copyright law. In particular:

m You may use the Library portion of the Product (if present) to compile and link with
C/C++ code to produce executable files.

m You may freely distribute such executable files for no additional license fee to Licensor.
m You may make one or more backup copies of the Product for archival purposes.

m You may permanently transfer ownership of the Product to another party only if the other
party agrees to the terms stated in this Notice and you transfer or destroy all copies of the
Product that are in your possession.

m You must preserve this Notice and all copyright notices with any copy you make of the
Product.

m You may not loan, rent, or sublicense the Product.

m You may not copy or distribute, in any form, any part of this Product for any purpose not
specifically permitted by this Notice.

80-N2040-13 Rev. D 304

Qualcomm Hexagon C Library User Guide Copyright and license notices

This copy of the Product is licensed for use by a limited number of developers, which is
specified as part of the packaging for this Product. A license for up to ten users, for example,
limits to ten the number of developers reasonably able to use the Product at any instant of time.
Thus, ten is the maximum number of possible concurrent users, not the number of actual
concurrent users. A single-user license is for use by just one developer.

Anyone who accesses this software has a moral responsibility not to aid or abet illegal copying
by others. Licensor recognizes that the machine-readable format of the Product makes it
particularly conducive to sharing within multi-user systems and across networks. Such use is
permitted only so long as Licensee does not exceed the maximum number of possible
concurrent users and takes reasonable precautions to protect the Product against unauthorized
copying and against public access. In particular, please note that the ability to access this copy
does not imply permission to use it or to copy it. Please note also that Licensor has expended
considerable professional effort in the production of this Product, and continues to do so to
keep it current.

Licensor warrants that the Product as shipped performs substantially in accordance with its
documented purpose, and that the medium on which the Product is provided is free from
defects in material and workmanship. To the extent permitted by law, any implied warranties
on the Product are limited to 90 days.

Licensor's entire liability under this warranty shall be, at Licensor's option, either to refund the
license fee paid by Licensee or to replace the medium on which the Product is provided. This
is also Licensee's exclusive remedy. To qualify for this remedy, Licensee must demonstrate
satisfactory proof of purchase to Licensor and return the Product in reasonably good condition
to Licensor.

LICENSOR OTHERWISE MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT
THE SUITABILITY OF THIS PRODUCT, EITHER EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. LICENSOR
SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING THIS PRODUCT, EVEN IF LICENSOR HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. TO THE EXTENT PERMITTED BY LAW,
LICENSOR SHALL NOT BE LIABLE FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES.

By using this Product, you agree to abide by the intellectual property laws and all other
applicable laws of the USA, and the terms described above. You may be held legally
responsible for any infringement that is caused or encouraged by your failure to abide by the
terms of this Notice.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the government is subject to the
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software Clause as DFARS 52.227-7013 and FAR 52.227-19. Unpublished rights
are reserved under the Copyright Laws of the USA. Contractor/ Manufacturer is
DINKUMWARE, LTD., 398 Main Street, Concord MA 01742.

The terms of this notice shall be governed by the laws of the Commonwealth of
Massachusetts. THE RIGHTS AND OBLIGATIONS OF THE PARTIES SHALL NOT BE
GOVERNED BY THE PROVISIONS OF THE U.N. CONVENTION FOR THE
INTERNATIONAL SALE OF GOODS, 1980.

80-N2040-13 Rev. D 305

Qualcomm Hexagon C Library User Guide Copyright and license notices

This Copyright and License Notice is the entire agreement of the parties with respect to the
matters set forth herein, and supersedes any other oral or written agreements or
communications relating thereto, and shall alone be binding. No provision appearing on any
purchase order, quotation form, or other form originated by either party shall be applicable.

Dinkumware and Dinkum are registered trademarks of Dinkumware, Ltd.

End of Copyright and License Notice

References

ANSI Standard X3.159-1989 (New York NY: American National Standards Institute,
1989). The original C Standard, developed by the ANSI-authorized committee X3J11. The
Rationale that accompanies the C Standard explains many of the decisions that went into
it, if you can get your hands on a copy.

ISO/IEC Standard 9899:1990 (Geneva: International Standards Organization, 1990). Until
1999, the official C Standard around the world. Aside from formatting details and section
numbering, the ISO C Standard is identical to the ANSI C Standard.

ISO/IEC Amendment 1 to Standard 9899:1990 (Geneva: International Standards
Organization, 1995). The first (and only) amendment to the C Standard. It provides
substantial support for manipulating large character sets.

ISO/IEC Standard 9899:1999 (Geneva: International Standards Organization, 1999) as
corrected through 2003. The official C Standard around the world, replacing ISO/IEC
Standard 9899:1990.

ISO/IEC Standard 14882:1998 (Geneva: International Standards Organization, 1998) as
corrected through 2003. The official C++ Standard around the world. The ISO C++
Standard is identical to the ANSI C++ Standard.

P.J. Plauger, The Standard C Library (Englewood Cliffs NJ: Prentice Hall, 1992). Contains
a complete implementation of the Standard C library, as of 1992 at least, as well as text
from the library portion of the C Standard and guidance in using the Standard C library.

P.J. Plauger, The Draft Standard C++ Library (Englewood Cliffs NJ: Prentice Hall, 1995).
Contains a complete implementation of the draft Standard C++ library as of early 1994.

P.J. Plauger, Alexander Stepanov, Meng Lee, and David R. Musser, The Standard
Template Library (Englewood Cliffs NJ: Prentice Hall, 2001). Contains a complete
implementation of the Standard Template Library as incorporated into the C++ Standard.

80-N2040-13 Rev. D 306

Qualcomm Hexagon C Library User Guide Copyright and license notices

Bug reports

The author welcomes reports of any errors or omissions. Please report any bugs or difficulties
to:

Dinkumware Support
Dinkumware, Ltd.

398 Main Street

Concord MA, 01742-2321
USA

+1-978-371-2773 (UTC -4 hours, -5 November through March)
+1-978-371-9014 (FAX)

support@dinkumware.com

80-N2040-13 Rev. D 307

Qualcomm Hexagon C Library User Guide Copyright and license notices

12.2

NetBSD notices

Portions of this document are licensed under the following licenses.

a64l.3:

Copyright © 1998, 1999 The NetBSD Foundation, Inc.

All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Klaus Klein.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the
following acknowledgement:

This product includes software developed by the NetBSD Foundation, Inc. and its
contributors.

4. Neither the name of The NetBSD Foundation nor the names of its contributors can be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS “AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 308

Qualcomm Hexagon C Library User Guide Copyright and license notices

access.2:
Copyright © 1980, 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 309

Qualcomm Hexagon C Library User Guide Copyright and license notices

alarm.3:
Copyright © 1980, 1991, 1993, 1994
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 310

Qualcomm Hexagon C Library User Guide Copyright and license notices

bcmp.3:

Copyright © 1990, 1991, 1993

The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Chris Torek.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 311

Qualcomm Hexagon C Library User Guide Copyright and license notices

bcopy.3:

Copyright © 1990, 1991, 1993

The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Chris Torek.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 312

Qualcomm Hexagon C Library User Guide Copyright and license notices

bzero.3:

Copyright © 1990, 1991, 1993

The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Chris Torek.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 313

Qualcomm Hexagon C Library User Guide Copyright and license notices

fentl.2:
Copyright © 1983, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 314

Qualcomm Hexagon C Library User Guide Copyright and license notices

ffs.3:

Copyright © 1990, 1991, 1993

The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Chris Torek.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 315

Qualcomm Hexagon C Library User Guide Copyright and license notices

getcwd.3:
Copyright © 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 316

Qualcomm Hexagon C Library User Guide Copyright and license notices

getsubopt.3:
Copyright © 1990, 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 317

Qualcomm Hexagon C Library User Guide Copyright and license notices

gettimeofday.2:
Copyright © 1980, 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 318

Qualcomm Hexagon C Library User Guide Copyright and license notices

hcreate.3:

Copyright © 1999 The NetBSD Foundation, Inc.

All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Klaus Klein.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the
following acknowledgement: This product includes software developed by the NetBSD
Foundation, Inc. and its contributors.

4. Neither the name of The NetBSD Foundation nor the names of its contributors can be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 319

Qualcomm Hexagon C Library User Guide Copyright and license notices

index.3:

Copyright © 1990, 1991, 1993

The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Chris Torek.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 320

Qualcomm Hexagon C Library User Guide Copyright and license notices

isascii.3:
Copyright © 1989, 1991 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 321

Qualcomm Hexagon C Library User Guide Copyright and license notices

isinf.3:
Copyright © 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "“AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 322

Qualcomm Hexagon C Library User Guide Copyright and license notices

isnan.3:
Copyright © 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 323

Qualcomm Hexagon C Library User Guide Copyright and license notices

j0.3:
Copyright © 1985, 1991 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 324

Qualcomm Hexagon C Library User Guide Copyright and license notices

memcpy.3:
Copyright © 1990, 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 325

Qualcomm Hexagon C Library User Guide Copyright and license notices

rindex.3:

Copyright © 1990, 1991, 1993

The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Chris Torek.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 326

Qualcomm Hexagon C Library User Guide Copyright and license notices

stat.2:
Copyright © 1980, 1991, 1993, 1994
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 327

Qualcomm Hexagon C Library User Guide Copyright and license notices

strptime.3:

Copyright © 1997, 1998 The NetBSD Foundation, Inc.

All rights reserved.

This file was contributed to The NetBSD Foundation by Klaus Klein.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the
following acknowledgement:

This product includes software developed by the NetBSD Foundation, Inc. and its
contributors.

4. Neither the name of The NetBSD Foundation nor the names of its contributors can be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 328

Qualcomm Hexagon C Library User Guide Copyright and license notices

swab.3:
Copyright © 1990, 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 329

Qualcomm Hexagon C Library User Guide Copyright and license notices

sysconf.3:
Copyright © 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 330

Qualcomm Hexagon C Library User Guide Copyright and license notices

times.3:
Copyright © 1990, 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 331

Qualcomm Hexagon C Library User Guide Copyright and license notices

toascii.3:
Copyright © 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 332

Qualcomm Hexagon C Library User Guide Copyright and license notices

tolower.3:
Copyright © 1989, 1991 The Regents of the University of California.
All rights reserved.

This code is derived from software contributed to Berkeley by the American National
Standards Committee X3, on Information Processing Systems.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. 3. Neither the name of the University nor the names of its contributors can be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 333

Qualcomm Hexagon C Library User Guide Copyright and license notices

tsearch.3:
Copyright © 1997 Todd C. Miller <Todd.Miller@courtesan.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

80-N2040-13 Rev. D 334

Qualcomm Hexagon C Library User Guide Copyright and license notices

unlink.2:
Copyright © 1980, 1991, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the University nor the names of its contributors can be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

80-N2040-13 Rev. D 335

	1 Introduction
	1.1 Conventions
	1.2 Technical assistance

	2 Overview
	2.1 Dinkum C99 library
	2.2 Posix APIs

	3 Using the C library
	3.1 Using standard C headers
	3.2 C library conventions
	3.3 Program startup and termination

	4 Characters
	4.1 Character sets
	4.1.1 Character sets and locales

	4.2 Escape sequences
	4.2.1 Numeric escape sequences

	4.3 Trigraphs
	4.4 Multibyte characters
	4.4.1 Wide-character encoding

	5 Files and streams
	5.1 Text and binary streams
	5.2 Byte and wide streams
	5.3 Controlling streams
	5.4 Stream states

	6 Formatted output
	6.1 Print formats
	6.2 Print functions
	6.3 Print conversion specifiers

	7 Formatted input
	7.1 Scan formats
	7.2 Scan functions
	7.3 Scan conversion specifiers

	8 Functions
	8.1 Argument promotion
	8.2 Expressions
	8.3 Statements

	9 Expressions
	9.1 Expression types
	9.2 Promoting

	10 Preprocessing
	10.1 Macros
	10.2 Directives
	10.3 Preprocessing phases

	11 Header files
	11.1 <assert.h>
	11.1.1 assert

	11.2 <complex.h>
	11.2.1 abs, fabs, cabs, cabsf, cabsl
	11.2.2 acos, cacos, cacosf, cacosl
	11.2.3 acosh, cacosh, cacoshf, cacoshl
	11.2.4 arg, carg, cargf, cargl
	11.2.5 asin, casin, casinf, casinl
	11.2.6 asinh, casinh, casinhf, casinhl
	11.2.7 atan, catan, catanf, catanl
	11.2.8 atanh, catanh, catanhf, catanhl
	11.2.9 complex
	11.2.10 _Complex_I
	11.2.11 conj, conjf, conjl
	11.2.12 cos, ccos, ccosf, ccosl
	11.2.13 cosh, ccosh, ccoshf, ccoshl
	11.2.14 cproj, cprojf, cprojl
	11.2.15 exp, cexp, cexpf, cexpl
	11.2.16 I
	11.2.17 imag, cimag, cimagf, cimagl
	11.2.18 imaginary
	11.2.19 _Imaginary_I
	11.2.20 log, clog, clogf, clogl
	11.2.21 pow, cpow, cpowf, cpowl
	11.2.22 real, creal, crealf, creall
	11.2.23 sin, csin, csinf, csinl
	11.2.24 sinh, csinh, csinhf, csinhl
	11.2.25 sqrt, csqrt, csqrtf, csqrtl
	11.2.26 tan, ctan, ctanf, ctanl
	11.2.27 tanh, ctanh, ctanhf, ctanhl

	11.3 <ctype.h>
	11.3.1 isalnum
	11.3.2 isalpha
	11.3.3 isascii
	11.3.4 isblank
	11.3.5 iscntrl
	11.3.6 isdigit
	11.3.7 isgraph
	11.3.8 islower
	11.3.9 isprint
	11.3.10 ispunct
	11.3.11 isspace
	11.3.12 isupper
	11.3.13 isxdigit
	11.3.14 toascii
	11.3.15 tolower
	11.3.16 _tolower
	11.3.17 toupper
	11.3.18 _toupper

	11.4 <errno.h>
	11.4.1 EDOM
	11.4.2 EILSEQ
	11.4.3 ERANGE
	11.4.4 errno

	11.5 <fcntl.h>
	11.6 <fenv.h>
	11.6.1 FE_ALL_EXCEPT
	11.6.2 FE_DFL_ENV
	11.6.3 FE_DIVBYZERO
	11.6.4 FE_DOWNWARD
	11.6.5 FE_INEXACT
	11.6.6 FE_INVALID
	11.6.7 FE_TONEAREST
	11.6.8 FE_TOWARDZERO
	11.6.9 FE_OVERFLOW
	11.6.10 FE_UNDERFLOW
	11.6.11 FE_UPWARD
	11.6.12 fenv_t
	11.6.13 feclearexcept
	11.6.14 fegettrapenable
	11.6.15 fegetenv
	11.6.16 fegetexceptflag
	11.6.17 fegetround
	11.6.18 feholdexcept
	11.6.19 feraiseexcept
	11.6.20 fesetenv
	11.6.21 fesetexceptflag
	11.6.22 fesetround
	11.6.23 fesettrapenable
	11.6.24 fetestexcept
	11.6.25 feupdateenv
	11.6.26 fexcept_t

	11.7 <float.h>
	11.7.1 DBL_DIG
	11.7.2 DBL_EPSILON
	11.7.3 DBL_MANT_DIG
	11.7.4 DBL_MAX
	11.7.5 DBL_MAX_10_EXP
	11.7.6 DBL_MAX_EXP
	11.7.7 DBL_MIN
	11.7.8 DBL_MIN_10_EXP
	11.7.9 DBL_MIN_EXP
	11.7.10 DECIMAL_DIG
	11.7.11 FLT_DIG
	11.7.12 FLT_EPSILON
	11.7.13 FLT_EVAL_METHOD
	11.7.14 FLT_MANT_DIG
	11.7.15 FLT_MAX
	11.7.16 FLT_MAX_10_EXP
	11.7.17 FLT_MAX_EXP
	11.7.18 FLT_MIN
	11.7.19 FLT_MIN_10_EXP
	11.7.20 FLT_MIN_EXP
	11.7.21 FLT_RADIX
	11.7.22 FLT_ROUNDS
	11.7.23 LDBL_DIG
	11.7.24 LDBL_EPSILON
	11.7.25 LDBL_MANT_DIG
	11.7.26 LDBL_MAX
	11.7.27 LDBL_MAX_10_EXP
	11.7.28 LDBL_MAX_EXP
	11.7.29 LDBL_MIN
	11.7.30 LDBL_MIN_10_EXP
	11.7.31 LDBL_MIN_EXP

	11.8 <inttypes.h>
	11.8.1 imaxabs, abs
	11.8.2 imaxdiv, div
	11.8.3 imaxdiv_t
	11.8.4 PRId8, PRId16, PRId32, PRId64
	11.8.5 PRIdFAST8, PRIdFAST16, PRIdFAST32, PRIdFAST64
	11.8.6 PRIdLEAST8, PRIdLEAST16, PRIdLEAST32, PRIdLEAST64
	11.8.7 PRIdMAX
	11.8.8 PRIdPTR
	11.8.9 PRIi8, PRIi16, PRIi32, PRIi64
	11.8.10 PRIiFAST8, PRIiFAST16, PRIiFAST32, PRIiFAST64
	11.8.11 PRIiLEAST8, PRIiLEAST16, PRIiLEAST32, PRIiLEAST64
	11.8.12 PRIiMAX
	11.8.13 PRIiPTR
	11.8.14 PRIo8, PRIo16, PRIo32, PRIo64
	11.8.15 PRIoFAST8, PRIoFAST16, PRIoFAST32, PRIoFAST64
	11.8.16 PRIoLEAST8, PRIoLEAST16, PRIoLEAST32, PRIoLEAST64
	11.8.17 PRIoMAX
	11.8.18 PRIoPTR
	11.8.19 PRIu8, PRIu16, PRIu32, PRIu64
	11.8.20 PRIuFAST8, PRIuFAST16, PRIuFAST32, PRIuFAST64
	11.8.21 PRIuLEAST8, PRIuLEAST16, PRIuLEAST32, PRIuLEAST64
	11.8.22 PRIuMAX
	11.8.23 PRIuPTR
	11.8.24 PRIx8, PRIx16, PRIx32, PRIx64
	11.8.25 PRIxFAST8, PRIxFAST16, PRIxFAST32, PRIxFAST64
	11.8.26 PRIxLEAST8, PRIxLEAST16, PRIxLEAST32, PRIxLEAST64
	11.8.27 PRIxMAX
	11.8.28 PRIxPTR
	11.8.29 PRIX8, PRIX16, PRIX32, PRIX64
	11.8.30 PRIXFAST8, PRIXFAST16, PRIXFAST32, PRIXFAST64
	11.8.31 PRIXLEAST8, PRIXLEAST16, PRIXLEAST32, PRIXLEAST64
	11.8.32 PRIXMAX
	11.8.33 PRIXPTR
	11.8.34 SCNd8, SCNd16, SCNd32, SCNd64
	11.8.35 SCNdFAST8, SCNdFAST16, SCNdFAST32, SCNdFAST64
	11.8.36 SCNdLEAST8, SCNdLEAST16, SCNdLEAST32, SCNdLEAST64
	11.8.37 SCNdMAX
	11.8.38 SCNdPTR
	11.8.39 SCNi8, SCNi16, SCNi32, SCNi64
	11.8.40 SCNiFAST8, SCNiFAST16, SCNiFAST32, SCNiFAST64
	11.8.41 SCNiLEAST8, SCNiLEAST16, SCNiLEAST32, SCNiLEAST64
	11.8.42 SCNiMAX
	11.8.43 SCNiPTR
	11.8.44 SCNo8, SCNo16, SCNo32, SCNo64
	11.8.45 SCNoFAST8, SCNoFAST16, SCNoFAST32, SCNoFAST64
	11.8.46 SCNoLEAST8, SCNoLEAST16, SCNoLEAST32, SCNoLEAST64
	11.8.47 SCNoMAX
	11.8.48 SCNoPTR
	11.8.49 SCNu8, SCNu16, SCNu32, SCNu64
	11.8.50 SCNuFAST8, SCNuFAST16, SCNuFAST32, SCNuFAST64
	11.8.51 SCNuLEAST8, SCNuLEAST16, SCNuLEAST32, SCNuLEAST64
	11.8.52 SCNuMAX
	11.8.53 SCNuPTR
	11.8.54 SCNx8, SCNx16, SCNx32, SCNx64
	11.8.55 SCNxFAST8, SCNxFAST16, SCNxFAST32, SCNxFAST64
	11.8.56 SCNxLEAST8, SCNxLEAST16, SCNxLEAST32, SCNxLEAST64
	11.8.57 SCNxMAX
	11.8.58 SCNxPTR
	11.8.59 strtoimax
	11.8.60 strtoumax
	11.8.61 wcstoimax
	11.8.62 wcstoumax

	11.9 <iohw.h>
	11.10 <iso646.h>
	11.10.1 and
	11.10.2 and_eq
	11.10.3 bitand
	11.10.4 bitor
	11.10.5 compl
	11.10.6 not
	11.10.7 not_eq
	11.10.8 or
	11.10.9 or_eq
	11.10.10 xor
	11.10.11 xor_eq

	11.11 <limits.h>
	11.11.1 CHAR_BIT
	11.11.2 CHAR_MAX
	11.11.3 CHAR_MIN
	11.11.4 INT_MAX
	11.11.5 INT_MIN
	11.11.6 LLONG_MAX
	11.11.7 LLONG_MIN
	11.11.8 LONG_MAX
	11.11.9 LONG_MIN
	11.11.10 MB_LEN_MAX
	11.11.11 SCHAR_MAX
	11.11.12 SCHAR_MIN
	11.11.13 SHRT_MAX
	11.11.14 SHRT_MIN
	11.11.15 UCHAR_MAX
	11.11.16 UINT_MAX
	11.11.17 ULLONG_MAX
	11.11.18 ULONG_MAX
	11.11.19 USHRT_MAX

	11.12 <locale.h>
	11.12.1 LC_ALL
	11.12.2 LC_COLLATE
	11.12.3 LC_CTYPE
	11.12.4 LC_MONETARY
	11.12.5 LC_NUMERIC
	11.12.6 LC_TIME
	11.12.7 lconv
	11.12.8 localeconv
	11.12.9 NULL
	11.12.10 setlocale

	11.13 <math.h>
	11.13.1 abs, fabs, fabsf, fabsl
	11.13.2 acos, acosf, acosl
	11.13.3 acosh, acoshf, acoshl
	11.13.4 asin, asinf, asinl
	11.13.5 asinh, asinhf, asinhl
	11.13.6 atan, atanf, atanl
	11.13.7 atan2, atan2f, atan2l
	11.13.8 atanh, atanhf, atanhl
	11.13.9 cbrt, cbrtf, cbrtl
	11.13.10 ceil, ceilf, ceill
	11.13.11 copysign, copysignf, copysignl
	11.13.12 cos, cosf, cosl
	11.13.13 cosh, coshf, coshl
	11.13.14 double_t
	11.13.15 erf, erff,erfl
	11.13.16 erfc, erfcf, erfcl
	11.13.17 exp, expf, expl
	11.13.18 exp10f
	11.13.19 exp2, exp2f, exp2l
	11.13.20 expm1, expm1f, expm1l
	11.13.21 fdim, fdimf, fdiml
	11.13.22 float_t
	11.13.23 floor, floorf, floorl
	11.13.24 fma, fmaf,fmal
	11.13.25 fmax, fmaxf, fmaxl
	11.13.26 fmin, fminf, fminl
	11.13.27 fmod, fmodf, fmodl
	11.13.28 fpclassify
	11.13.29 FP_FAST_FMA
	11.13.30 FP_FAST_FMAF
	11.13.31 FP_FAST_FMAL
	11.13.32 FP_ILOGB0
	11.13.33 FP_ILOGBNAN
	11.13.34 FP_INFINITE
	11.13.35 FP_NAN
	11.13.36 FP_NORMAL
	11.13.37 FP_SUBNORMAL
	11.13.38 FP_ZERO
	11.13.39 frexp, frexpf, frexpl
	11.13.40 HUGE_VAL
	11.13.41 HUGE_VALF
	11.13.42 HUGE_VALL
	11.13.43 hypot, hypotf, hypotl
	11.13.44 ilogb, ilogbf, ilogbl
	11.13.45 INFINITY
	11.13.46 isfinite
	11.13.47 isgreater
	11.13.48 isgreaterequal
	11.13.49 isinf
	11.13.50 isless
	11.13.51 islessequal
	11.13.52 islessgreater
	11.13.53 isnan
	11.13.54 isnormal
	11.13.55 isunordered
	11.13.56 j0
	11.13.57 j1
	11.13.58 jn
	11.13.59 ldexp, ldexpf, ldexpl
	11.13.60 lgamma, lgammaf, lgammal
	11.13.61 llrint, llrintf, llrintl
	11.13.62 llround, llroundf, llroundl
	11.13.63 log, logf, logl
	11.13.64 log10, log10f, log10l
	11.13.65 log1p, log1pf, log1pl
	11.13.66 log2, log2f, log2l
	11.13.67 logb, logbf, logbl
	11.13.68 lrint, lrintf, lrintl
	11.13.69 lround, lroundf, lroundl
	11.13.70 MATH_ERRNO
	11.13.71 MATH_ERREXCEPT
	11.13.72 math_errhandling
	11.13.73 modf, modff, modfl
	11.13.74 NAN
	11.13.75 nan, nanf,nanl
	11.13.76 nearbyint, nearbyintf, nearbyintl
	11.13.77 nextafter, nextafterf, nextafterl
	11.13.78 nexttoward, nexttowardf, nexttowardl
	11.13.79 pow, powf, powl
	11.13.80 remainder, remainderf, remainderl
	11.13.81 remquo, remquof, remquol
	11.13.82 rint, rintf, rintl
	11.13.83 round, roundf, roundl
	11.13.84 scalb
	11.13.85 scalbln, scalblnf, scalblnl
	11.13.86 scalbn, scalbnf, scalbnl
	11.13.87 signbit
	11.13.88 sin, sinf, sinl
	11.13.89 sinh, sinhf, sinhl
	11.13.90 sqrt, sqrtf, sqrtl
	11.13.91 tan, tanf, tanl
	11.13.92 tanh, tanhf, tanhl
	11.13.93 tgamma, tgammaf, tgammal
	11.13.94 trunc, truncf, truncl
	11.13.95 y0
	11.13.96 y1
	11.13.97 yn

	11.14 <search.h>
	11.14.1 hcreate
	11.14.2 hdestroy
	11.14.3 hsearch
	11.14.4 tdelete
	11.14.5 tfind
	11.14.6 tsearch
	11.14.7 twalk

	11.15 <setjmp.h>
	11.15.1 longjmp
	11.15.2 setjmp

	11.16 <signal.h>
	11.16.1 raise
	11.16.2 sig_atomic_t
	11.16.3 SIGABRT
	11.16.4 SIGFPE
	11.16.5 SIGILL
	11.16.6 SIGINT
	11.16.7 signal
	11.16.8 SIGSEGV
	11.16.9 SIGTERM
	11.16.10 SIG_DFL
	11.16.11 SIG_ERR
	11.16.12 SIG_IGN

	11.17 <stdarg.h>
	11.17.1 va_arg
	11.17.2 va_copy
	11.17.3 va_end
	11.17.4 va_list
	11.17.5 va_start

	11.18 <stdbool.h>
	11.18.1 bool
	11.18.2 false
	11.18.3 true

	11.19 <stddef.h>
	11.19.1 NULL
	11.19.2 offsetof
	11.19.3 ptrdiff_t
	11.19.4 size_t
	11.19.5 wchar_t

	11.20 <stdint.h>
	11.20.1 INT8_C, INT16_C, INT32_C, INT64_C
	11.20.2 INT8_MAX, INT16_MAX, INT32_MAX, INT64_MAX
	11.20.3 INT8_MIN, INT16_MIN, INT32_MIN, INT64_MIN
	11.20.4 int8_t, int16_t, int32_t, int64_t
	11.20.5 INT_FAST8_MAX, INT_FAST16_MAX, INT_FAST32_MAX, INT_FAST64_MAX
	11.20.6 INT_FAST8_MIN, INT_FAST16_MIN, INT_FAST32_MIN, INT_FAST64_MIN
	11.20.7 int_fast8_t, int_fast16_t, int_fast32_t, int_fast64_t
	11.20.8 INT_LEAST8_MAX, INT_LEAST16_MAX, INT_LEAST32_MAX, INT_LEAST64_MAX
	11.20.9 INT_LEAST8_MIN, INT_LEAST16_MIN, INT_LEAST32_MIN, INT_LEAST64_MIN
	11.20.10 int_least8_t, int_least16_t, int_least32_t, int_least64_t
	11.20.11 INTMAX_C
	11.20.12 INTMAX_MAX
	11.20.13 INTMAX_MIN
	11.20.14 intmax_t
	11.20.15 INTPTR_MAX
	11.20.16 INTPTR_MIN
	11.20.17 intptr_t
	11.20.18 PTRDIFF_MAX
	11.20.19 PTRDIFF_MIN
	11.20.20 SIG_ATOMIC_MAX
	11.20.21 SIG_ATOMIC_MIN
	11.20.22 SIZE_MAX
	11.20.23 UINT8_C, UINT16_C, UINT32_C, UINT64_C
	11.20.24 UINT8_MAX, UINT16_MAX, UINT32_MAX, UINT64_MAX
	11.20.25 uint8_t, uint16_t, uint32_t, uint64_t
	11.20.26 UINT_FAST8_MAX, UINT_FAST16_MAX, UINT_FAST32_MAX, UINT_FAST64_MAX
	11.20.27 uint_fast8_t, uint_fast16_t, uint_fast32_t, uint_fast64_t
	11.20.28 UINT_LEAST8_MAX, UINT_LEAST16_MAX, UINT_LEAST32_MAX, UINT_LEAST64_MAX
	11.20.29 uint_least8_t, uint_least16_t, uint_least32_t, uint_least64_t
	11.20.30 UINTMAX_C
	11.20.31 UINTMAX_MAX
	11.20.32 uintmax_t
	11.20.33 UINTPTR_MAX
	11.20.34 uintptr_t
	11.20.35 WCHAR_MAX
	11.20.36 WCHAR_MIN
	11.20.37 WINT_MAX
	11.20.38 WINT_MIN

	11.21 <stdio.h>
	11.21.1 BUFSIZ
	11.21.2 clearerr
	11.21.3 EOF
	11.21.4 fclose
	11.21.5 feof
	11.21.6 ferror
	11.21.7 fflush
	11.21.8 fgetc
	11.21.9 fgetpos
	11.21.10 fgets
	11.21.11 FILE
	11.21.12 FILENAME_MAX
	11.21.13 fopen
	11.21.14 FOPEN_MAX
	11.21.15 fpos_t
	11.21.16 fprintf
	11.21.17 fputc
	11.21.18 fputs
	11.21.19 fread
	11.21.20 freopen
	11.21.21 fscanf
	11.21.22 fseek
	11.21.23 fseeko
	11.21.24 fsetpos
	11.21.25 ftell
	11.21.26 ftello
	11.21.27 fwrite
	11.21.28 getc
	11.21.29 getc_unlocked
	11.21.30 getchar
	11.21.31 getchar_unlocked
	11.21.32 gets
	11.21.33 _IOFBF
	11.21.34 _IOLBF
	11.21.35 _IONBF
	11.21.36 L_tmpnam
	11.21.37 NULL
	11.21.38 perror
	11.21.39 printf
	11.21.40 putc
	11.21.41 putc_unlocked
	11.21.42 putchar
	11.21.43 putchar_unlocked
	11.21.44 puts
	11.21.45 remove
	11.21.46 rename
	11.21.47 rewind
	11.21.48 scanf
	11.21.49 SEEK_CUR
	11.21.50 SEEK_END
	11.21.51 SEEK_SET
	11.21.52 setbuf
	11.21.53 setvbuf
	11.21.54 size_t
	11.21.55 snprintf
	11.21.56 sprintf
	11.21.57 sscanf
	11.21.58 stderr
	11.21.59 stdin
	11.21.60 stdout
	11.21.61 tmpfile
	11.21.62 TMP_MAX
	11.21.63 tmpnam
	11.21.64 ungetc
	11.21.65 vfprintf
	11.21.66 vfscanf
	11.21.67 vprintf
	11.21.68 vscanf
	11.21.69 vsnprintf
	11.21.70 vsprintf
	11.21.71 vsscanf

	11.22 <stdlib.h>
	11.22.1 a64l
	11.22.2 abort
	11.22.3 abs
	11.22.4 atexit
	11.22.5 atof
	11.22.6 atoi
	11.22.7 atol
	11.22.8 atoll
	11.22.9 bsearch
	11.22.10 calloc
	11.22.11 div
	11.22.12 div_t
	11.22.13 drand48
	11.22.14 ecvt
	11.22.15 erand48
	11.22.16 exit
	11.22.17 _Exit
	11.22.18 EXIT_FAILURE
	11.22.19 EXIT_SUCCESS
	11.22.20 fcvt
	11.22.21 free
	11.22.22 gcvt
	11.22.23 getenv
	11.22.24 getsubopt
	11.22.25 jrand48
	11.22.26 l64a
	11.22.27 labs
	11.22.28 lcong48
	11.22.29 llabs
	11.22.30 ldiv
	11.22.31 lldiv
	11.22.32 ldiv_t
	11.22.33 lldiv_t
	11.22.34 lrand48
	11.22.35 malloc
	11.22.36 MB_CUR_MAX
	11.22.37 mblen
	11.22.38 mbstowcs
	11.22.39 mbtowc
	11.22.40 mkstemp
	11.22.41 mktemp
	11.22.42 mrand48
	11.22.43 nrand48
	11.22.44 NULL
	11.22.45 putenv
	11.22.46 qsort
	11.22.47 rand
	11.22.48 RAND_MAX
	11.22.49 rand_r
	11.22.50 realloc
	11.22.51 seed48
	11.22.52 size_t
	11.22.53 srand
	11.22.54 srand48
	11.22.55 strtod
	11.22.56 strtof
	11.22.57 strtol
	11.22.58 strtold
	11.22.59 strtoll
	11.22.60 strtoul
	11.22.61 strtoull
	11.22.62 system
	11.22.63 tempnam
	11.22.64 wchar_t
	11.22.65 wcstombs
	11.22.66 wctomb

	11.23 <string.h>
	11.23.1 memccpy
	11.23.2 memchr
	11.23.3 memcmp
	11.23.4 memcpy
	11.23.5 memcpy_v
	11.23.6 memmove
	11.23.7 memmove_v
	11.23.8 memset
	11.23.9 NULL
	11.23.10 size_t
	11.23.11 strcasecmp
	11.23.12 strcat
	11.23.13 strchr
	11.23.14 strcmp
	11.23.15 strcoll
	11.23.16 strcpy
	11.23.17 strcspn
	11.23.18 strdup
	11.23.19 strerror
	11.23.20 strerror_r
	11.23.21 strlcat
	11.23.22 strlcpy
	11.23.23 strlen
	11.23.24 strncasecmp
	11.23.25 strncat
	11.23.26 strncmp
	11.23.27 strncpy
	11.23.28 strpbrk
	11.23.29 strrchr
	11.23.30 strspn
	11.23.31 strstr
	11.23.32 strtok
	11.23.33 strtok_r
	11.23.34 strxfrm

	11.24 <strings.h>
	11.24.1 bcmp
	11.24.2 bcopy
	11.24.3 bzero
	11.24.4 ffs
	11.24.5 index
	11.24.6 rindex

	11.25 <sys/stat.h>
	11.26 <sys/time.h>
	11.27 <sys/times.h>
	11.28 <tgmath.h>
	11.28.1 acos
	11.28.2 acosh
	11.28.3 carg
	11.28.4 asin
	11.28.5 asinh
	11.28.6 atan
	11.28.7 atan2
	11.28.8 atanh
	11.28.9 cbrt
	11.28.10 ceil
	11.28.11 cimag
	11.28.12 conj
	11.28.13 copysign
	11.28.14 cos
	11.28.15 cosh
	11.28.16 cproj
	11.28.17 creal
	11.28.18 erf
	11.28.19 erfc
	11.28.20 exp
	11.28.21 exp2
	11.28.22 expm1
	11.28.23 fabs
	11.28.24 fdim
	11.28.25 floor
	11.28.26 fma
	11.28.27 fmax
	11.28.28 fmin
	11.28.29 fmod
	11.28.30 frexp
	11.28.31 hypot
	11.28.32 ilogb
	11.28.33 ldexp
	11.28.34 lgamma
	11.28.35 llrint
	11.28.36 llround
	11.28.37 log
	11.28.38 log10
	11.28.39 log1p
	11.28.40 log2
	11.28.41 logb
	11.28.42 lrint
	11.28.43 lround
	11.28.44 modf
	11.28.45 nearbyint
	11.28.46 nextafter
	11.28.47 nexttoward
	11.28.48 pow
	11.28.49 remainder
	11.28.50 remquo
	11.28.51 rint
	11.28.52 round
	11.28.53 scalbln
	11.28.54 scalbn
	11.28.55 sin
	11.28.56 sinh
	11.28.57 sqrt
	11.28.58 tan
	11.28.59 tanh
	11.28.60 tgamma
	11.28.61 trunc

	11.29 <time.h>
	11.29.1 asctime
	11.29.2 asctime_r
	11.29.3 clock
	11.29.4 CLOCKS_PER_SEC
	11.29.5 clock_t
	11.29.6 ctime
	11.29.7 ctime_r
	11.29.8 difftime
	11.29.9 gmtime
	11.29.10 gmtime_r
	11.29.11 localtime
	11.29.12 localtime_r
	11.29.13 mktime
	11.29.14 NULL
	11.29.15 size_t
	11.29.16 strftime
	11.29.17 strptime
	11.29.18 time
	11.29.19 time_t
	11.29.20 tm

	11.30 <uchar.h>
	11.30.1 c32rtomb
	11.30.2 char16_t
	11.30.3 char32_t
	11.30.4 mbrtoc16
	11.30.5 mbrtoc32
	11.30.6 mbstate_t
	11.30.7 NULL
	11.30.8 size_t
	11.30.9 __STDC_UTF_16__
	11.30.10 __STDC_UTF_32__

	11.31 <unistd.h>
	11.31.1 alarm
	11.31.2 getcwd
	11.31.3 getopt
	11.31.4 getpid
	11.31.5 getwd
	11.31.6 isatty
	11.31.7 swab
	11.31.8 sysconf
	11.31.9 unlink

	11.32 <wchar.h>
	11.32.1 btowc
	11.32.2 fgetwc
	11.32.3 fgetws
	11.32.4 fputwc
	11.32.5 fputws
	11.32.6 fwide
	11.32.7 fwprintf
	11.32.8 fwscanf
	11.32.9 getwc
	11.32.10 getwchar
	11.32.11 mbrlen
	11.32.12 mbrtowc
	11.32.13 mbsinit
	11.32.14 mbsrtowcs
	11.32.15 mbstate_t
	11.32.16 NULL
	11.32.17 putwc
	11.32.18 putwchar
	11.32.19 size_t
	11.32.20 swprintf
	11.32.21 swscanf
	11.32.22 tm
	11.32.23 ungetwc
	11.32.24 vfwprintf
	11.32.25 vfwscanf
	11.32.26 vswprintf
	11.32.27 vswscanf
	11.32.28 vwprintf
	11.32.29 vwscanf
	11.32.30 WCHAR_MAX
	11.32.31 WCHAR_MIN
	11.32.32 wchar_t
	11.32.33 wcrtomb
	11.32.34 wcscat
	11.32.35 wcschr
	11.32.36 wcscmp
	11.32.37 wcscoll
	11.32.38 wcscpy
	11.32.39 wcscspn
	11.32.40 wcsftime
	11.32.41 wcslen
	11.32.42 wcsncat
	11.32.43 wcsncmp
	11.32.44 wcsncpy
	11.32.45 wcspbrk
	11.32.46 wcsrchr
	11.32.47 wcsrtombs
	11.32.48 wcsspn
	11.32.49 wcsstr
	11.32.50 wcstod
	11.32.51 wcstof
	11.32.52 wcstok
	11.32.53 wcstol
	11.32.54 wcstold
	11.32.55 wcstoll
	11.32.56 wcstoul
	11.32.57 wcstoull
	11.32.58 wcsxfrm
	11.32.59 wctob
	11.32.60 WEOF
	11.32.61 wint_t
	11.32.62 wmemchr
	11.32.63 wmemcmp
	11.32.64 wmemcpy
	11.32.65 wmemmove
	11.32.66 wmemset
	11.32.67 wprintf
	11.32.68 wscanf

	11.33 <wctype.h>
	11.33.1 WEOF
	11.33.2 iswalnum
	11.33.3 iswalpha
	11.33.4 iswblank
	11.33.5 iswcntrl
	11.33.6 iswctype
	11.33.7 iswdigit
	11.33.8 iswgraph
	11.33.9 iswlower
	11.33.10 iswprint
	11.33.11 iswpunct
	11.33.12 iswspace
	11.33.13 iswupper
	11.33.14 iswxdigit
	11.33.15 towctrans
	11.33.16 towlower
	11.33.17 towupper
	11.33.18 wctrans
	11.33.19 wctrans_t
	11.33.20 wctype
	11.33.21 wctype_t
	11.33.22 wint_t

	12 Copyright and license notices
	12.1 Dinkumware notice
	12.2 NetBSD notices

